Matches in SemOpenAlex for { <https://semopenalex.org/work/W2110492881> ?p ?o ?g. }
- W2110492881 endingPage "1289" @default.
- W2110492881 startingPage "1277" @default.
- W2110492881 abstract "The restoration of images corrupted by blur and Poisson noise is a key issue in medical and biological image processing. While most existing methods are based on variational models, generally derived from a maximum a posteriori (MAP) formulation, recently sparse representations of images have shown to be efficient approaches for image recovery. Following this idea, we propose in this paper a model containing three terms: a patch-based sparse representation prior over a learned dictionary, the pixel-based total variation regularization term and a data-fidelity term capturing the statistics of Poisson noise. The resulting optimization problem can be solved by an alternating minimization technique combined with variable splitting. Extensive experimental results suggest that in terms of visual quality, peak signal-to-noise ratio value and the method noise, the proposed algorithm outperforms state-of-the-art methods." @default.
- W2110492881 created "2016-06-24" @default.
- W2110492881 creator A5010501561 @default.
- W2110492881 creator A5016129592 @default.
- W2110492881 creator A5059443966 @default.
- W2110492881 creator A5090845509 @default.
- W2110492881 date "2013-07-01" @default.
- W2110492881 modified "2023-10-18" @default.
- W2110492881 title "A Dictionary Learning Approach for Poisson Image Deblurring" @default.
- W2110492881 cites W112727521 @default.
- W2110492881 cites W1975807114 @default.
- W2110492881 cites W1979072167 @default.
- W2110492881 cites W1982804236 @default.
- W2110492881 cites W1983623531 @default.
- W2110492881 cites W1987075379 @default.
- W2110492881 cites W1998339281 @default.
- W2110492881 cites W2005089986 @default.
- W2110492881 cites W2008419427 @default.
- W2110492881 cites W2010825468 @default.
- W2110492881 cites W2021535288 @default.
- W2110492881 cites W2034135634 @default.
- W2110492881 cites W2048291471 @default.
- W2110492881 cites W2056370875 @default.
- W2110492881 cites W2056758595 @default.
- W2110492881 cites W2065267700 @default.
- W2110492881 cites W2073489937 @default.
- W2110492881 cites W2085386913 @default.
- W2110492881 cites W2096539625 @default.
- W2110492881 cites W2097073572 @default.
- W2110492881 cites W2099440229 @default.
- W2110492881 cites W2100705753 @default.
- W2110492881 cites W2103559027 @default.
- W2110492881 cites W2105469730 @default.
- W2110492881 cites W2107214962 @default.
- W2110492881 cites W2108855378 @default.
- W2110492881 cites W2110264793 @default.
- W2110492881 cites W2111854888 @default.
- W2110492881 cites W2112391032 @default.
- W2110492881 cites W2114122776 @default.
- W2110492881 cites W2115706991 @default.
- W2110492881 cites W2116013899 @default.
- W2110492881 cites W2116148865 @default.
- W2110492881 cites W2119403778 @default.
- W2110492881 cites W2124682210 @default.
- W2110492881 cites W2125852763 @default.
- W2110492881 cites W2128188192 @default.
- W2110492881 cites W2133149216 @default.
- W2110492881 cites W2136396015 @default.
- W2110492881 cites W2138461515 @default.
- W2110492881 cites W2138643603 @default.
- W2110492881 cites W2139639076 @default.
- W2110492881 cites W2139951616 @default.
- W2110492881 cites W2142058898 @default.
- W2110492881 cites W2145889472 @default.
- W2110492881 cites W2151114449 @default.
- W2110492881 cites W2153663612 @default.
- W2110492881 cites W2156575092 @default.
- W2110492881 cites W2158252006 @default.
- W2110492881 cites W2160547390 @default.
- W2110492881 cites W2168908146 @default.
- W2110492881 cites W2172275395 @default.
- W2110492881 cites W2320596590 @default.
- W2110492881 cites W2536599074 @default.
- W2110492881 cites W3104720471 @default.
- W2110492881 cites W3106359998 @default.
- W2110492881 cites W3121742466 @default.
- W2110492881 cites W4214806317 @default.
- W2110492881 cites W4214815024 @default.
- W2110492881 doi "https://doi.org/10.1109/tmi.2013.2255883" @default.
- W2110492881 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23549888" @default.
- W2110492881 hasPublicationYear "2013" @default.
- W2110492881 type Work @default.
- W2110492881 sameAs 2110492881 @default.
- W2110492881 citedByCount "88" @default.
- W2110492881 countsByYear W21104928812014 @default.
- W2110492881 countsByYear W21104928812015 @default.
- W2110492881 countsByYear W21104928812016 @default.
- W2110492881 countsByYear W21104928812017 @default.
- W2110492881 countsByYear W21104928812018 @default.
- W2110492881 countsByYear W21104928812019 @default.
- W2110492881 countsByYear W21104928812020 @default.
- W2110492881 countsByYear W21104928812021 @default.
- W2110492881 countsByYear W21104928812022 @default.
- W2110492881 countsByYear W21104928812023 @default.
- W2110492881 crossrefType "journal-article" @default.
- W2110492881 hasAuthorship W2110492881A5010501561 @default.
- W2110492881 hasAuthorship W2110492881A5016129592 @default.
- W2110492881 hasAuthorship W2110492881A5059443966 @default.
- W2110492881 hasAuthorship W2110492881A5090845509 @default.
- W2110492881 hasBestOaLocation W21104928812 @default.
- W2110492881 hasConcept C105795698 @default.
- W2110492881 hasConcept C106430172 @default.
- W2110492881 hasConcept C115961682 @default.
- W2110492881 hasConcept C124066611 @default.
- W2110492881 hasConcept C153180895 @default.
- W2110492881 hasConcept C154945302 @default.
- W2110492881 hasConcept C207282899 @default.
- W2110492881 hasConcept C2776135515 @default.