Matches in SemOpenAlex for { <https://semopenalex.org/work/W2110659301> ?p ?o ?g. }
- W2110659301 endingPage "28" @default.
- W2110659301 startingPage "21" @default.
- W2110659301 abstract "Abstract Motivation: Protein localization data are a valuable information resource helpful in elucidating protein functions. It is highly desirable to predict a protein's subcellular locations automatically from its sequence. Results: In this paper, fuzzy k-nearest neighbors (k-NN) algorithm has been introduced to predict proteins' subcellular locations from their dipeptide composition. The prediction is performed with a new data set derived from version 41.0 SWISS-PROT databank, the overall predictive accuracy about 80% has been achieved in a jackknife test. The result demonstrates the applicability of this relative simple method and possible improvement of prediction accuracy for the protein subcellular locations. We also applied this method to annotate six entirely sequenced proteomes, namely Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Oryza sativa, Arabidopsis thaliana and a subset of all human proteins. Availability: Supplementary information and subcellular location annotations for eukaryotes are available at http://166.111.30.65/hying/fuzzy_loc.htm" @default.
- W2110659301 created "2016-06-24" @default.
- W2110659301 creator A5015806703 @default.
- W2110659301 creator A5033512723 @default.
- W2110659301 date "2004-01-01" @default.
- W2110659301 modified "2023-10-15" @default.
- W2110659301 title "Prediction of protein subcellular locations using fuzzy <i>k</i>-NN method" @default.
- W2110659301 cites W1489703101 @default.
- W2110659301 cites W1491250132 @default.
- W2110659301 cites W1526754730 @default.
- W2110659301 cites W1979228662 @default.
- W2110659301 cites W1984226817 @default.
- W2110659301 cites W1989932358 @default.
- W2110659301 cites W1992577925 @default.
- W2110659301 cites W1993711987 @default.
- W2110659301 cites W1994704939 @default.
- W2110659301 cites W1998852098 @default.
- W2110659301 cites W2004331331 @default.
- W2110659301 cites W2006211612 @default.
- W2110659301 cites W2008895011 @default.
- W2110659301 cites W2015513598 @default.
- W2110659301 cites W2020194549 @default.
- W2110659301 cites W2025131366 @default.
- W2110659301 cites W2036702275 @default.
- W2110659301 cites W2040895929 @default.
- W2110659301 cites W2044498524 @default.
- W2110659301 cites W2054342685 @default.
- W2110659301 cites W2055043387 @default.
- W2110659301 cites W2055400262 @default.
- W2110659301 cites W2082605863 @default.
- W2110659301 cites W2085022192 @default.
- W2110659301 cites W2100851422 @default.
- W2110659301 cites W2114010544 @default.
- W2110659301 cites W2114909890 @default.
- W2110659301 cites W2117919289 @default.
- W2110659301 cites W2119452210 @default.
- W2110659301 cites W2120026469 @default.
- W2110659301 cites W2120684043 @default.
- W2110659301 cites W2124306486 @default.
- W2110659301 cites W2137335580 @default.
- W2110659301 cites W2145957695 @default.
- W2110659301 cites W2148853951 @default.
- W2110659301 cites W2152458080 @default.
- W2110659301 cites W2152770371 @default.
- W2110659301 cites W2155755608 @default.
- W2110659301 cites W2158714788 @default.
- W2110659301 cites W2160979370 @default.
- W2110659301 cites W2171091522 @default.
- W2110659301 cites W2171901005 @default.
- W2110659301 cites W2799061466 @default.
- W2110659301 doi "https://doi.org/10.1093/bioinformatics/btg366" @default.
- W2110659301 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/14693804" @default.
- W2110659301 hasPublicationYear "2004" @default.
- W2110659301 type Work @default.
- W2110659301 sameAs 2110659301 @default.
- W2110659301 citedByCount "233" @default.
- W2110659301 countsByYear W21106593012012 @default.
- W2110659301 countsByYear W21106593012013 @default.
- W2110659301 countsByYear W21106593012014 @default.
- W2110659301 countsByYear W21106593012015 @default.
- W2110659301 countsByYear W21106593012016 @default.
- W2110659301 countsByYear W21106593012017 @default.
- W2110659301 countsByYear W21106593012018 @default.
- W2110659301 countsByYear W21106593012019 @default.
- W2110659301 countsByYear W21106593012020 @default.
- W2110659301 countsByYear W21106593012021 @default.
- W2110659301 countsByYear W21106593012022 @default.
- W2110659301 countsByYear W21106593012023 @default.
- W2110659301 crossrefType "journal-article" @default.
- W2110659301 hasAuthorship W2110659301A5015806703 @default.
- W2110659301 hasAuthorship W2110659301A5033512723 @default.
- W2110659301 hasBestOaLocation W21106593011 @default.
- W2110659301 hasConcept C10010492 @default.
- W2110659301 hasConcept C104317684 @default.
- W2110659301 hasConcept C104397665 @default.
- W2110659301 hasConcept C105795698 @default.
- W2110659301 hasConcept C124101348 @default.
- W2110659301 hasConcept C140051345 @default.
- W2110659301 hasConcept C154945302 @default.
- W2110659301 hasConcept C167625842 @default.
- W2110659301 hasConcept C185429906 @default.
- W2110659301 hasConcept C2776879804 @default.
- W2110659301 hasConcept C2778944004 @default.
- W2110659301 hasConcept C33923547 @default.
- W2110659301 hasConcept C41008148 @default.
- W2110659301 hasConcept C54355233 @default.
- W2110659301 hasConcept C58166 @default.
- W2110659301 hasConcept C60644358 @default.
- W2110659301 hasConcept C70721500 @default.
- W2110659301 hasConcept C81790035 @default.
- W2110659301 hasConcept C86803240 @default.
- W2110659301 hasConceptScore W2110659301C10010492 @default.
- W2110659301 hasConceptScore W2110659301C104317684 @default.
- W2110659301 hasConceptScore W2110659301C104397665 @default.
- W2110659301 hasConceptScore W2110659301C105795698 @default.
- W2110659301 hasConceptScore W2110659301C124101348 @default.
- W2110659301 hasConceptScore W2110659301C140051345 @default.
- W2110659301 hasConceptScore W2110659301C154945302 @default.