Matches in SemOpenAlex for { <https://semopenalex.org/work/W2110832913> ?p ?o ?g. }
- W2110832913 endingPage "170" @default.
- W2110832913 startingPage "155" @default.
- W2110832913 abstract "California's Central Valley grows a significant fraction of grapes used for wine production in the United States. With increasing vineyard acreage, reduced water availability in much of California, and competing water use interests, it is critical to be able to monitor regional water use and evapotranspiration (ET) over large areas, but also in detail at individual field scales to improve water management within these viticulture production systems. This can be achieved by integrating remote sensing data from multiple satellite systems with different spatiotemporal characteristics. In this research, we evaluate the utility of a multi-scale system for monitoring ET as applied over two vineyard sites near Lodi, California during the 2013 growing season, leading into the drought in early 2014. The system employs a multi-sensor satellite data fusion methodology (STARFM: Spatial and Temporal Adaptive Reflective Fusion Model) combined with a multi-scale ET retrieval algorithm based on the Two-Source Energy Balance (TSEB) land-surface representation to compute daily ET at 30 m resolution. In this system, TSEB is run using thermal band imagery from the Geostationary Environmental Operational Satellites (GOES; 4-km spatial resolution, hourly temporal sampling), the Moderate Resolution Imaging Spectroradiometer (MODIS) data (1 km resolution, daily acquisition) and the new Landsat 8 satellite (sharpened to 30 m resolution, ~ 16 day acquisition). Estimates of daily ET generated in two neighboring fields of Pinot noir vines of different age agree with ground-based flux measurements acquired in-field during most of the 2013 season with relative mean absolute errors on the order of 19–23% (root mean square errors of approximately 1 mm d− 1), reducing to 14–20% at the weekly timestep relevant for irrigation management (~ 5 mm wk− 1). A model overestimation of ET in the early season was detected in the younger vineyard, perhaps relating to an inter-row grass cover crop. Spatial patterns of cumulative ET generally correspond to measured yield maps and indicate areas of variable crop moisture, soil condition, and yield within the vineyards that could require adaptive management. The results suggest that multi-sensor remote sensing observations provide a unique means for monitoring crop water use and soil moisture status at field-scales over extended growing regions, and may have value in supporting operational water management decisions in vineyards and other high value crops." @default.
- W2110832913 created "2016-06-24" @default.
- W2110832913 creator A5001143892 @default.
- W2110832913 creator A5014828316 @default.
- W2110832913 creator A5021426815 @default.
- W2110832913 creator A5027663024 @default.
- W2110832913 creator A5031242392 @default.
- W2110832913 creator A5041250416 @default.
- W2110832913 creator A5047557432 @default.
- W2110832913 creator A5048514229 @default.
- W2110832913 creator A5072480434 @default.
- W2110832913 creator A5081983851 @default.
- W2110832913 creator A5082148318 @default.
- W2110832913 creator A5082926470 @default.
- W2110832913 creator A5084523298 @default.
- W2110832913 creator A5087846348 @default.
- W2110832913 date "2016-11-01" @default.
- W2110832913 modified "2023-10-01" @default.
- W2110832913 title "Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach" @default.
- W2110832913 cites W1483093516 @default.
- W2110832913 cites W1560372614 @default.
- W2110832913 cites W1975815458 @default.
- W2110832913 cites W1980320347 @default.
- W2110832913 cites W1983407123 @default.
- W2110832913 cites W1984443733 @default.
- W2110832913 cites W1988512587 @default.
- W2110832913 cites W2014630223 @default.
- W2110832913 cites W2018318189 @default.
- W2110832913 cites W2020449875 @default.
- W2110832913 cites W2021720319 @default.
- W2110832913 cites W2025745000 @default.
- W2110832913 cites W2026640495 @default.
- W2110832913 cites W2031295113 @default.
- W2110832913 cites W2039240409 @default.
- W2110832913 cites W2041570083 @default.
- W2110832913 cites W2046869778 @default.
- W2110832913 cites W2047884674 @default.
- W2110832913 cites W2052675066 @default.
- W2110832913 cites W2059622506 @default.
- W2110832913 cites W2061003790 @default.
- W2110832913 cites W2061382717 @default.
- W2110832913 cites W2063592299 @default.
- W2110832913 cites W2066637819 @default.
- W2110832913 cites W2071269893 @default.
- W2110832913 cites W2088603520 @default.
- W2110832913 cites W2091601871 @default.
- W2110832913 cites W2092736595 @default.
- W2110832913 cites W2104618325 @default.
- W2110832913 cites W2105103805 @default.
- W2110832913 cites W2105172715 @default.
- W2110832913 cites W2105339792 @default.
- W2110832913 cites W2116287613 @default.
- W2110832913 cites W2119130463 @default.
- W2110832913 cites W2123134454 @default.
- W2110832913 cites W2126153881 @default.
- W2110832913 cites W2127238483 @default.
- W2110832913 cites W2130312332 @default.
- W2110832913 cites W2130412156 @default.
- W2110832913 cites W2130615363 @default.
- W2110832913 cites W2138408852 @default.
- W2110832913 cites W2138751033 @default.
- W2110832913 cites W2139250825 @default.
- W2110832913 cites W2146421864 @default.
- W2110832913 cites W2147611675 @default.
- W2110832913 cites W2151456308 @default.
- W2110832913 cites W2156196165 @default.
- W2110832913 cites W2163771233 @default.
- W2110832913 cites W2169920519 @default.
- W2110832913 cites W2173064161 @default.
- W2110832913 doi "https://doi.org/10.1016/j.rse.2015.10.025" @default.
- W2110832913 hasPublicationYear "2016" @default.
- W2110832913 type Work @default.
- W2110832913 sameAs 2110832913 @default.
- W2110832913 citedByCount "192" @default.
- W2110832913 countsByYear W21108329132016 @default.
- W2110832913 countsByYear W21108329132017 @default.
- W2110832913 countsByYear W21108329132018 @default.
- W2110832913 countsByYear W21108329132019 @default.
- W2110832913 countsByYear W21108329132020 @default.
- W2110832913 countsByYear W21108329132021 @default.
- W2110832913 countsByYear W21108329132022 @default.
- W2110832913 countsByYear W21108329132023 @default.
- W2110832913 crossrefType "journal-article" @default.
- W2110832913 hasAuthorship W2110832913A5001143892 @default.
- W2110832913 hasAuthorship W2110832913A5014828316 @default.
- W2110832913 hasAuthorship W2110832913A5021426815 @default.
- W2110832913 hasAuthorship W2110832913A5027663024 @default.
- W2110832913 hasAuthorship W2110832913A5031242392 @default.
- W2110832913 hasAuthorship W2110832913A5041250416 @default.
- W2110832913 hasAuthorship W2110832913A5047557432 @default.
- W2110832913 hasAuthorship W2110832913A5048514229 @default.
- W2110832913 hasAuthorship W2110832913A5072480434 @default.
- W2110832913 hasAuthorship W2110832913A5081983851 @default.
- W2110832913 hasAuthorship W2110832913A5082148318 @default.
- W2110832913 hasAuthorship W2110832913A5082926470 @default.
- W2110832913 hasAuthorship W2110832913A5084523298 @default.
- W2110832913 hasAuthorship W2110832913A5087846348 @default.
- W2110832913 hasBestOaLocation W21108329131 @default.