Matches in SemOpenAlex for { <https://semopenalex.org/work/W2110861431> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2110861431 endingPage "826" @default.
- W2110861431 startingPage "802" @default.
- W2110861431 abstract "We obtain new lower and upper bounds for the maximum multiplicity of some weighted and, respectively, nonweighted common geometric graphs drawn on $n$ points in the plane in general position (with no three points collinear): perfect matchings, spanning trees, spanning cycles (tours), and triangulations. (i) We present a new lower bound construction for the maximum number of triangulations a set of $n$ points in general position can have. In particular, we show that a generalized double chain formed by two almost convex chains admits $Omega (8.65^n)$ different triangulations. This improves the bound $Omega (8.48^n)$ achieved by the previous best construction, the double zig-zag chain studied by Aichholzer et al. (ii) We obtain a new lower bound of $Omega(12.00^n)$ for the number of noncrossing spanning trees of the double chain composed of two convex chains. The previous bound, $Omega(10.42^n)$, stood unchanged for more than 10 years. (iii) Using a recent upper bound of $30^n$ for the number of triangulations, due to Sharir and Sheffer, we show that $n$ points in the plane in general position admit at most $O(68.62^n)$ noncrossing spanning cycles. (iv) We derive lower bounds for the number of maximum and minimum weighted geometric graphs (matchings, spanning trees, and tours). We show that the number of shortest tours can be exponential in $n$ for points in general position. These tours are automatically noncrossing. Likewise, we show that the number of longest noncrossing tours can be exponential in $n$. It was known that the number of shortest noncrossing perfect matchings can be exponential in $n$, and here we show that the number of longest noncrossing perfect matchings can be also exponential in $n$. It was known that the number of longest noncrossing spanning trees of a point set can be exponentially large, and here we show that this can be also realized with points in convex position. For points in convex position we re-derive tight bounds for the number of longest and shortest tours with some simpler arguments. We also give a combinatorial characterization of longest tours, which yields an $O(nlog n)$ time algorithm for computing them." @default.
- W2110861431 created "2016-06-24" @default.
- W2110861431 creator A5030799674 @default.
- W2110861431 creator A5038764657 @default.
- W2110861431 creator A5055531990 @default.
- W2110861431 creator A5091313409 @default.
- W2110861431 date "2013-01-01" @default.
- W2110861431 modified "2023-09-24" @default.
- W2110861431 title "Bounds on the Maximum Multiplicity of Some Common Geometric Graphs" @default.
- W2110861431 cites W1656332081 @default.
- W2110861431 cites W1965976352 @default.
- W2110861431 cites W1990566310 @default.
- W2110861431 cites W2000008376 @default.
- W2110861431 cites W2013115769 @default.
- W2110861431 cites W2057690024 @default.
- W2110861431 cites W2071731426 @default.
- W2110861431 cites W2079698947 @default.
- W2110861431 cites W2085110997 @default.
- W2110861431 cites W2085179971 @default.
- W2110861431 cites W2086526821 @default.
- W2110861431 cites W2096398399 @default.
- W2110861431 cites W2109075893 @default.
- W2110861431 cites W2152141013 @default.
- W2110861431 cites W2163448076 @default.
- W2110861431 cites W2569928643 @default.
- W2110861431 cites W4238913003 @default.
- W2110861431 doi "https://doi.org/10.1137/110849407" @default.
- W2110861431 hasPublicationYear "2013" @default.
- W2110861431 type Work @default.
- W2110861431 sameAs 2110861431 @default.
- W2110861431 citedByCount "37" @default.
- W2110861431 countsByYear W21108614312012 @default.
- W2110861431 countsByYear W21108614312013 @default.
- W2110861431 countsByYear W21108614312014 @default.
- W2110861431 countsByYear W21108614312015 @default.
- W2110861431 countsByYear W21108614312016 @default.
- W2110861431 countsByYear W21108614312017 @default.
- W2110861431 countsByYear W21108614312018 @default.
- W2110861431 countsByYear W21108614312019 @default.
- W2110861431 countsByYear W21108614312020 @default.
- W2110861431 countsByYear W21108614312023 @default.
- W2110861431 crossrefType "journal-article" @default.
- W2110861431 hasAuthorship W2110861431A5030799674 @default.
- W2110861431 hasAuthorship W2110861431A5038764657 @default.
- W2110861431 hasAuthorship W2110861431A5055531990 @default.
- W2110861431 hasAuthorship W2110861431A5091313409 @default.
- W2110861431 hasBestOaLocation W21108614312 @default.
- W2110861431 hasConcept C112680207 @default.
- W2110861431 hasConcept C114614502 @default.
- W2110861431 hasConcept C118615104 @default.
- W2110861431 hasConcept C121332964 @default.
- W2110861431 hasConcept C134306372 @default.
- W2110861431 hasConcept C150397156 @default.
- W2110861431 hasConcept C156004811 @default.
- W2110861431 hasConcept C2524010 @default.
- W2110861431 hasConcept C2779557605 @default.
- W2110861431 hasConcept C33923547 @default.
- W2110861431 hasConcept C62520636 @default.
- W2110861431 hasConcept C64331007 @default.
- W2110861431 hasConcept C77553402 @default.
- W2110861431 hasConceptScore W2110861431C112680207 @default.
- W2110861431 hasConceptScore W2110861431C114614502 @default.
- W2110861431 hasConceptScore W2110861431C118615104 @default.
- W2110861431 hasConceptScore W2110861431C121332964 @default.
- W2110861431 hasConceptScore W2110861431C134306372 @default.
- W2110861431 hasConceptScore W2110861431C150397156 @default.
- W2110861431 hasConceptScore W2110861431C156004811 @default.
- W2110861431 hasConceptScore W2110861431C2524010 @default.
- W2110861431 hasConceptScore W2110861431C2779557605 @default.
- W2110861431 hasConceptScore W2110861431C33923547 @default.
- W2110861431 hasConceptScore W2110861431C62520636 @default.
- W2110861431 hasConceptScore W2110861431C64331007 @default.
- W2110861431 hasConceptScore W2110861431C77553402 @default.
- W2110861431 hasIssue "2" @default.
- W2110861431 hasLocation W21108614311 @default.
- W2110861431 hasLocation W21108614312 @default.
- W2110861431 hasLocation W21108614313 @default.
- W2110861431 hasLocation W21108614314 @default.
- W2110861431 hasLocation W21108614315 @default.
- W2110861431 hasLocation W21108614316 @default.
- W2110861431 hasLocation W21108614317 @default.
- W2110861431 hasOpenAccess W2110861431 @default.
- W2110861431 hasPrimaryLocation W21108614311 @default.
- W2110861431 hasRelatedWork W1978344479 @default.
- W2110861431 hasRelatedWork W2110861431 @default.
- W2110861431 hasRelatedWork W2147388254 @default.
- W2110861431 hasRelatedWork W2569250480 @default.
- W2110861431 hasRelatedWork W2596764499 @default.
- W2110861431 hasRelatedWork W2947186141 @default.
- W2110861431 hasRelatedWork W2964317353 @default.
- W2110861431 hasRelatedWork W384763036 @default.
- W2110861431 hasRelatedWork W4301018421 @default.
- W2110861431 hasRelatedWork W4301385707 @default.
- W2110861431 hasVolume "27" @default.
- W2110861431 isParatext "false" @default.
- W2110861431 isRetracted "false" @default.
- W2110861431 magId "2110861431" @default.
- W2110861431 workType "article" @default.