Matches in SemOpenAlex for { <https://semopenalex.org/work/W2110990927> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2110990927 abstract "This paper presents an application of neural networks for solving the job-shop scheduling problem with the consideration of lot sizes (i.e. job batch sizes), which are important since jobs are often processed in batches. The energy-based neural network that have been proposed to solve this problem usually take a long time to converge to solutions. The authors previously (1994) proposed a new neural model which needs no special convergence procedure and can find optimal or near-optimal solutions of the problem at a much faster speed. However, in this model as well as other energy-based models, the number of neurons are proportional to the lot sizes of the jobs. This may complicate the implementation. In this paper, we extend our model to solve this problem. In this extended model, the number of neurons are fixed for different lot sizes. These results are quite good in terms of quality and speed. Furthermore, in this new model, mn(n+7) number of neurons are needed to solve an n-job m-machine problem with an arbitrary lot size for each job." @default.
- W2110990927 created "2016-06-24" @default.
- W2110990927 creator A5014354452 @default.
- W2110990927 creator A5039233709 @default.
- W2110990927 date "2002-11-19" @default.
- W2110990927 modified "2023-09-25" @default.
- W2110990927 title "A neural network model for the job-shop scheduling problem with the consideration of lot sizes" @default.
- W2110990927 cites W1819761042 @default.
- W2110990927 cites W2133922862 @default.
- W2110990927 doi "https://doi.org/10.1109/robot.1995.525286" @default.
- W2110990927 hasPublicationYear "2002" @default.
- W2110990927 type Work @default.
- W2110990927 sameAs 2110990927 @default.
- W2110990927 citedByCount "4" @default.
- W2110990927 crossrefType "proceedings-article" @default.
- W2110990927 hasAuthorship W2110990927A5014354452 @default.
- W2110990927 hasAuthorship W2110990927A5039233709 @default.
- W2110990927 hasConcept C111873713 @default.
- W2110990927 hasConcept C111919701 @default.
- W2110990927 hasConcept C126255220 @default.
- W2110990927 hasConcept C154945302 @default.
- W2110990927 hasConcept C158336966 @default.
- W2110990927 hasConcept C160403385 @default.
- W2110990927 hasConcept C162324750 @default.
- W2110990927 hasConcept C199360897 @default.
- W2110990927 hasConcept C206729178 @default.
- W2110990927 hasConcept C2777243215 @default.
- W2110990927 hasConcept C2777303404 @default.
- W2110990927 hasConcept C33923547 @default.
- W2110990927 hasConcept C41008148 @default.
- W2110990927 hasConcept C50522688 @default.
- W2110990927 hasConcept C50644808 @default.
- W2110990927 hasConcept C55416958 @default.
- W2110990927 hasConcept C68387754 @default.
- W2110990927 hasConceptScore W2110990927C111873713 @default.
- W2110990927 hasConceptScore W2110990927C111919701 @default.
- W2110990927 hasConceptScore W2110990927C126255220 @default.
- W2110990927 hasConceptScore W2110990927C154945302 @default.
- W2110990927 hasConceptScore W2110990927C158336966 @default.
- W2110990927 hasConceptScore W2110990927C160403385 @default.
- W2110990927 hasConceptScore W2110990927C162324750 @default.
- W2110990927 hasConceptScore W2110990927C199360897 @default.
- W2110990927 hasConceptScore W2110990927C206729178 @default.
- W2110990927 hasConceptScore W2110990927C2777243215 @default.
- W2110990927 hasConceptScore W2110990927C2777303404 @default.
- W2110990927 hasConceptScore W2110990927C33923547 @default.
- W2110990927 hasConceptScore W2110990927C41008148 @default.
- W2110990927 hasConceptScore W2110990927C50522688 @default.
- W2110990927 hasConceptScore W2110990927C50644808 @default.
- W2110990927 hasConceptScore W2110990927C55416958 @default.
- W2110990927 hasConceptScore W2110990927C68387754 @default.
- W2110990927 hasLocation W21109909271 @default.
- W2110990927 hasOpenAccess W2110990927 @default.
- W2110990927 hasPrimaryLocation W21109909271 @default.
- W2110990927 hasRelatedWork W1524653960 @default.
- W2110990927 hasRelatedWork W1610986909 @default.
- W2110990927 hasRelatedWork W193475769 @default.
- W2110990927 hasRelatedWork W1951578538 @default.
- W2110990927 hasRelatedWork W1978424743 @default.
- W2110990927 hasRelatedWork W2073547351 @default.
- W2110990927 hasRelatedWork W2109004150 @default.
- W2110990927 hasRelatedWork W2124713686 @default.
- W2110990927 hasRelatedWork W2160002878 @default.
- W2110990927 hasRelatedWork W2163778649 @default.
- W2110990927 hasRelatedWork W2367998682 @default.
- W2110990927 hasRelatedWork W2508728642 @default.
- W2110990927 hasRelatedWork W2528385629 @default.
- W2110990927 hasRelatedWork W2918095264 @default.
- W2110990927 hasRelatedWork W2999415047 @default.
- W2110990927 hasRelatedWork W3134664017 @default.
- W2110990927 hasRelatedWork W3212164265 @default.
- W2110990927 hasRelatedWork W84867468 @default.
- W2110990927 hasRelatedWork W2497713041 @default.
- W2110990927 hasRelatedWork W2961543298 @default.
- W2110990927 isParatext "false" @default.
- W2110990927 isRetracted "false" @default.
- W2110990927 magId "2110990927" @default.
- W2110990927 workType "article" @default.