Matches in SemOpenAlex for { <https://semopenalex.org/work/W2111092199> ?p ?o ?g. }
- W2111092199 endingPage "641" @default.
- W2111092199 startingPage "597" @default.
- W2111092199 abstract "Abstract We investigate the effect of a prescribed tangential velocity on the drag force on a circular cylinder in a spanwise uniform cross flow. Using a combination of theoretical and numerical techniques we make an attempt at determining the optimal tangential velocity profiles which will reduce the drag force acting on the cylindrical body while minimizing the net power consumption characterized through a non-dimensional power loss coefficient ( ${C}_{mathit{PL}} $ ). A striking conclusion of our analysis is that the tangential velocity associated with the potential flow, which completely suppresses the drag force, is not optimal for both small and large, but finite Reynolds number. When inertial effects are negligible ( $mathit{Re}ll 1$ ), theoretical analysis based on two-dimensional Oseen equations gives us the optimal tangential velocity profile which leads to energetically efficient drag reduction. Furthermore, in the limit of zero Reynolds number ( $mathit{Re}ensuremath{rightarrow} 0$ ), minimum power loss is achieved for a tangential velocity profile corresponding to a shear-free perfect slip boundary. At finite $mathit{Re}$ , results from numerical simulations indicate that perfect slip is not optimum and a further reduction in drag can be achieved for reduced power consumption. A gradual increase in the strength of a tangential velocity which involves only the first reflectionally symmetric mode leads to a monotonic reduction in drag and eventual thrust production. Simulations reveal the existence of an optimal strength for which the power consumption attains a minima. At a Reynolds number of 100, minimum value of the power loss coefficient ( ${C}_{mathit{PL}} = 0. 37$ ) is obtained when the maximum in tangential surface velocity is about one and a half times the free stream uniform velocity corresponding to a percentage drag reduction of approximately 77 %; ${C}_{mathit{PL}} = 0. 42$ and $0. 50$ for perfect slip and potential flow cases, respectively. Our results suggest that potential flow tangential velocity enables energetically efficient propulsion at all Reynolds numbers but optimal drag reduction only for $mathit{Re}ensuremath{rightarrow} infty $ . The two-dimensional strategy of reducing drag while minimizing net power consumption is shown to be effective in three dimensions via numerical simulation of flow past an infinite circular cylinder at a Reynolds number of 300. Finally a strategy of reducing drag, suitable for practical implementation and amenable to experimental testing, through piecewise constant tangential velocities distributed along the cylinder periphery is proposed and analysed." @default.
- W2111092199 created "2016-06-24" @default.
- W2111092199 creator A5011709830 @default.
- W2111092199 creator A5029363487 @default.
- W2111092199 date "2013-01-09" @default.
- W2111092199 modified "2023-10-17" @default.
- W2111092199 title "Minimum power consumption for drag reduction on a circular cylinder by tangential surface motion" @default.
- W2111092199 cites W1966983433 @default.
- W2111092199 cites W1974259727 @default.
- W2111092199 cites W1977477823 @default.
- W2111092199 cites W1979176272 @default.
- W2111092199 cites W1979256978 @default.
- W2111092199 cites W1980339633 @default.
- W2111092199 cites W1982604835 @default.
- W2111092199 cites W1982961238 @default.
- W2111092199 cites W1984577209 @default.
- W2111092199 cites W1989005404 @default.
- W2111092199 cites W1990857251 @default.
- W2111092199 cites W1993888683 @default.
- W2111092199 cites W1997710117 @default.
- W2111092199 cites W2003209068 @default.
- W2111092199 cites W2017944985 @default.
- W2111092199 cites W2023252697 @default.
- W2111092199 cites W2024690337 @default.
- W2111092199 cites W2028864636 @default.
- W2111092199 cites W2031432225 @default.
- W2111092199 cites W2032418217 @default.
- W2111092199 cites W2033828618 @default.
- W2111092199 cites W2040790971 @default.
- W2111092199 cites W2043163633 @default.
- W2111092199 cites W2055709371 @default.
- W2111092199 cites W2056370235 @default.
- W2111092199 cites W2060424542 @default.
- W2111092199 cites W2060687937 @default.
- W2111092199 cites W2064168098 @default.
- W2111092199 cites W2065210952 @default.
- W2111092199 cites W2065591153 @default.
- W2111092199 cites W2066644352 @default.
- W2111092199 cites W2068643276 @default.
- W2111092199 cites W2069267589 @default.
- W2111092199 cites W2069558199 @default.
- W2111092199 cites W2085623372 @default.
- W2111092199 cites W2086616318 @default.
- W2111092199 cites W2091593787 @default.
- W2111092199 cites W2093286599 @default.
- W2111092199 cites W2097764389 @default.
- W2111092199 cites W2105999135 @default.
- W2111092199 cites W2106041758 @default.
- W2111092199 cites W2113064266 @default.
- W2111092199 cites W2114988248 @default.
- W2111092199 cites W2115775211 @default.
- W2111092199 cites W2116835924 @default.
- W2111092199 cites W2122468689 @default.
- W2111092199 cites W2124425119 @default.
- W2111092199 cites W2133758418 @default.
- W2111092199 cites W2136492094 @default.
- W2111092199 cites W2140934149 @default.
- W2111092199 cites W2144261846 @default.
- W2111092199 cites W2144428173 @default.
- W2111092199 cites W2146327821 @default.
- W2111092199 cites W2147104524 @default.
- W2111092199 cites W2148370995 @default.
- W2111092199 cites W2154600490 @default.
- W2111092199 cites W2156652224 @default.
- W2111092199 cites W2158200804 @default.
- W2111092199 cites W2395293397 @default.
- W2111092199 cites W3106280537 @default.
- W2111092199 cites W4248604014 @default.
- W2111092199 doi "https://doi.org/10.1017/jfm.2012.537" @default.
- W2111092199 hasPublicationYear "2013" @default.
- W2111092199 type Work @default.
- W2111092199 sameAs 2111092199 @default.
- W2111092199 citedByCount "26" @default.
- W2111092199 countsByYear W21110921992013 @default.
- W2111092199 countsByYear W21110921992014 @default.
- W2111092199 countsByYear W21110921992015 @default.
- W2111092199 countsByYear W21110921992016 @default.
- W2111092199 countsByYear W21110921992017 @default.
- W2111092199 countsByYear W21110921992018 @default.
- W2111092199 countsByYear W21110921992019 @default.
- W2111092199 countsByYear W21110921992021 @default.
- W2111092199 countsByYear W21110921992022 @default.
- W2111092199 countsByYear W21110921992023 @default.
- W2111092199 crossrefType "journal-article" @default.
- W2111092199 hasAuthorship W2111092199A5011709830 @default.
- W2111092199 hasAuthorship W2111092199A5029363487 @default.
- W2111092199 hasConcept C107568529 @default.
- W2111092199 hasConcept C120338312 @default.
- W2111092199 hasConcept C121332964 @default.
- W2111092199 hasConcept C137589782 @default.
- W2111092199 hasConcept C182748727 @default.
- W2111092199 hasConcept C195637266 @default.
- W2111092199 hasConcept C196558001 @default.
- W2111092199 hasConcept C203311528 @default.
- W2111092199 hasConcept C2524010 @default.
- W2111092199 hasConcept C33923547 @default.
- W2111092199 hasConcept C57879066 @default.
- W2111092199 hasConcept C72117827 @default.