Matches in SemOpenAlex for { <https://semopenalex.org/work/W2111240761> ?p ?o ?g. }
- W2111240761 abstract "Boosted by the Middlebury challenge, the precision of dense multi-view stereovision methods has increased drastically in the past few years. Yet, most methods, although they perform well on this benchmark, are still inapplicable to large-scale data sets taken under uncontrolled conditions. In this paper, we propose a multi-view stereo pipeline able to deal at the same time with very large scenes while still producing highly detailed reconstructions within very reasonable time. The keys to these benefits are twofold: (i) a minimum s-t cut based global optimization that transforms a dense point cloud into a visibility consistent mesh, followed by (ii) a mesh-based variational refinement that captures small details, smartly handling photo-consistency, regularization and adaptive resolution. Our method has been tested on numerous large-scale outdoor scenes. The accuracy of our reconstructions is also measured on the recent dense multi-view benchmark proposed by Strecha et al., showing our results to compare more than favorably with the current state-of-the-art." @default.
- W2111240761 created "2016-06-24" @default.
- W2111240761 creator A5064438646 @default.
- W2111240761 creator A5067188801 @default.
- W2111240761 creator A5079220399 @default.
- W2111240761 creator A5086988457 @default.
- W2111240761 date "2009-06-01" @default.
- W2111240761 modified "2023-10-01" @default.
- W2111240761 title "Towards high-resolution large-scale multi-view stereo" @default.
- W2111240761 cites W1536187505 @default.
- W2111240761 cites W1969742661 @default.
- W2111240761 cites W1977925962 @default.
- W2111240761 cites W2005686772 @default.
- W2111240761 cites W2013483851 @default.
- W2111240761 cites W2059496137 @default.
- W2111240761 cites W2064381770 @default.
- W2111240761 cites W2102429164 @default.
- W2111240761 cites W2108417695 @default.
- W2111240761 cites W2115362620 @default.
- W2111240761 cites W2116546169 @default.
- W2111240761 cites W2117007522 @default.
- W2111240761 cites W2119213281 @default.
- W2111240761 cites W2119454625 @default.
- W2111240761 cites W2119857899 @default.
- W2111240761 cites W2120977599 @default.
- W2111240761 cites W2122715211 @default.
- W2111240761 cites W2125524622 @default.
- W2111240761 cites W2127108679 @default.
- W2111240761 cites W2132055825 @default.
- W2111240761 cites W2137341062 @default.
- W2111240761 cites W2142792228 @default.
- W2111240761 cites W2150375237 @default.
- W2111240761 cites W2151103935 @default.
- W2111240761 cites W2152922136 @default.
- W2111240761 cites W2153346261 @default.
- W2111240761 cites W2156116778 @default.
- W2111240761 cites W2160014001 @default.
- W2111240761 cites W2161914072 @default.
- W2111240761 cites W2163309730 @default.
- W2111240761 cites W2164371826 @default.
- W2111240761 cites W2167085613 @default.
- W2111240761 cites W2168545424 @default.
- W2111240761 cites W2171393712 @default.
- W2111240761 cites W2237825899 @default.
- W2111240761 cites W3159981575 @default.
- W2111240761 doi "https://doi.org/10.1109/cvpr.2009.5206617" @default.
- W2111240761 hasPublicationYear "2009" @default.
- W2111240761 type Work @default.
- W2111240761 sameAs 2111240761 @default.
- W2111240761 citedByCount "141" @default.
- W2111240761 countsByYear W21112407612012 @default.
- W2111240761 countsByYear W21112407612013 @default.
- W2111240761 countsByYear W21112407612014 @default.
- W2111240761 countsByYear W21112407612015 @default.
- W2111240761 countsByYear W21112407612016 @default.
- W2111240761 countsByYear W21112407612017 @default.
- W2111240761 countsByYear W21112407612018 @default.
- W2111240761 countsByYear W21112407612019 @default.
- W2111240761 countsByYear W21112407612020 @default.
- W2111240761 countsByYear W21112407612021 @default.
- W2111240761 countsByYear W21112407612022 @default.
- W2111240761 countsByYear W21112407612023 @default.
- W2111240761 crossrefType "proceedings-article" @default.
- W2111240761 hasAuthorship W2111240761A5064438646 @default.
- W2111240761 hasAuthorship W2111240761A5067188801 @default.
- W2111240761 hasAuthorship W2111240761A5079220399 @default.
- W2111240761 hasAuthorship W2111240761A5086988457 @default.
- W2111240761 hasBestOaLocation W21112407612 @default.
- W2111240761 hasConcept C120665830 @default.
- W2111240761 hasConcept C121332964 @default.
- W2111240761 hasConcept C123403432 @default.
- W2111240761 hasConcept C127313418 @default.
- W2111240761 hasConcept C131979681 @default.
- W2111240761 hasConcept C13280743 @default.
- W2111240761 hasConcept C154945302 @default.
- W2111240761 hasConcept C185798385 @default.
- W2111240761 hasConcept C199360897 @default.
- W2111240761 hasConcept C2776135515 @default.
- W2111240761 hasConcept C2776436953 @default.
- W2111240761 hasConcept C2778755073 @default.
- W2111240761 hasConcept C31972630 @default.
- W2111240761 hasConcept C41008148 @default.
- W2111240761 hasConcept C43521106 @default.
- W2111240761 hasConcept C62520636 @default.
- W2111240761 hasConceptScore W2111240761C120665830 @default.
- W2111240761 hasConceptScore W2111240761C121332964 @default.
- W2111240761 hasConceptScore W2111240761C123403432 @default.
- W2111240761 hasConceptScore W2111240761C127313418 @default.
- W2111240761 hasConceptScore W2111240761C131979681 @default.
- W2111240761 hasConceptScore W2111240761C13280743 @default.
- W2111240761 hasConceptScore W2111240761C154945302 @default.
- W2111240761 hasConceptScore W2111240761C185798385 @default.
- W2111240761 hasConceptScore W2111240761C199360897 @default.
- W2111240761 hasConceptScore W2111240761C2776135515 @default.
- W2111240761 hasConceptScore W2111240761C2776436953 @default.
- W2111240761 hasConceptScore W2111240761C2778755073 @default.
- W2111240761 hasConceptScore W2111240761C31972630 @default.
- W2111240761 hasConceptScore W2111240761C41008148 @default.
- W2111240761 hasConceptScore W2111240761C43521106 @default.
- W2111240761 hasConceptScore W2111240761C62520636 @default.