Matches in SemOpenAlex for { <https://semopenalex.org/work/W2111243681> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2111243681 endingPage "rnw105" @default.
- W2111243681 startingPage "rnw105" @default.
- W2111243681 abstract "The stack ℳ¯g,n of stable curves and its coarse moduli space M¯g,n are defined over ℤ, and therefore over any field. Over an algebraically closed field of characteristic zero, in [11] Hacking showed that ℳ¯g,n is rigid (a conjecture of Kapranov), in [2, 23] Bruno and Mella for g=0, and the second author for g≥1 showed that its automorphism group is the symmetric group Sn, permuting marked points unless (g,n)∈{(0,4),(1,1),(1,2)}. The methods used in the papers above do not extend to positive characteristic. We show that in characteristic p>0, the rigidity of ℳ¯g,n, with the same exceptions as over ℂ, implies that its automorphism group is Sn. We prove that, over any field, M¯0,n is rigid and deduce that, over any field, Aut(M¯0,n)≅Sn for n≥5. Going back to characteristic zero, we prove that for g+n>4, the coarse moduli space M¯g,n is rigid, extending a result of Hacking who had proven it has no locally trivial deformations. Finally, we show that M¯1,2 is not rigid, although it does not admit locally trivial deformations, by explicitly computing his Kuranishi family. The stack ℳ¯g,n parametrizing Deligne–Mumford stable curves and its coarse moduli space M¯g,n are among the most fascinating and widely studied objects in algebraic geometry. A remarkable property of ℳ¯g,n is that it is smooth and proper over Spec(ℤ), and thus ℳ¯g,nR is defined over any commutative ring R via base change ... By [18] the formation of the coarse moduli space is compatible with flat base change; we write M¯g,nR for the coarse moduli scheme of ℳ¯g,nR. The symmetric group Sn acts via permutations of the marked points on M¯g,nR and ℳ¯g,nR for every ring R. The biregular automorphisms of the moduli space Mg,n, and of its Deligne–Mumford compactification M¯g,n have been studied in a series of papers [2, 9, 21-26, 33]. It is known that, with a short and explicit list of exceptions, over the field of complex numbers both the automorphism groups of the stack and of the coarse moduli space are isomorphic to Sn, see Appendix for details. In Section 2 we first study how automorphisms of a scheme behave with respect to field extensions, and then, given a scheme X→Spec(A) over a local ring A with residue field K and generic point ξ∈Spec(A), we show how the infinitesimal rigidity of XK plays a fundamental role in lifting automorphisms of XK to automorphisms of Xξ. Finally, in Section 7 we apply these results together with the rigidity results in Section 4 to M¯0,nK, with K a field of positive characteristic and A=W(K) the ring of Witt vector over K, in order to compute the automorphism group of M¯0,nK. The main results on the automorphism groups in Proposition 5.4, Theorem 7.3, and Appendix can be summarized as follows:" @default.
- W2111243681 created "2016-06-24" @default.
- W2111243681 creator A5064211398 @default.
- W2111243681 creator A5082388083 @default.
- W2111243681 date "2016-06-14" @default.
- W2111243681 modified "2023-10-01" @default.
- W2111243681 title "On the rigidity of moduli of curves in arbitrary characteristic" @default.
- W2111243681 cites W1480220833 @default.
- W2111243681 cites W1507919071 @default.
- W2111243681 cites W1550991113 @default.
- W2111243681 cites W1574682256 @default.
- W2111243681 cites W1979153357 @default.
- W2111243681 cites W1985174140 @default.
- W2111243681 cites W2000851731 @default.
- W2111243681 cites W2033693626 @default.
- W2111243681 cites W2055722844 @default.
- W2111243681 cites W2055803666 @default.
- W2111243681 cites W2068569397 @default.
- W2111243681 cites W2583112400 @default.
- W2111243681 cites W2598863526 @default.
- W2111243681 cites W2963822086 @default.
- W2111243681 cites W2964002033 @default.
- W2111243681 cites W2964290280 @default.
- W2111243681 cites W4205502224 @default.
- W2111243681 cites W4241195498 @default.
- W2111243681 cites W4248269519 @default.
- W2111243681 cites W4248533608 @default.
- W2111243681 cites W954650338 @default.
- W2111243681 doi "https://doi.org/10.1093/imrn/rnw105" @default.
- W2111243681 hasPublicationYear "2016" @default.
- W2111243681 type Work @default.
- W2111243681 sameAs 2111243681 @default.
- W2111243681 citedByCount "6" @default.
- W2111243681 countsByYear W21112436812014 @default.
- W2111243681 countsByYear W21112436812016 @default.
- W2111243681 countsByYear W21112436812017 @default.
- W2111243681 countsByYear W21112436812019 @default.
- W2111243681 countsByYear W21112436812021 @default.
- W2111243681 crossrefType "journal-article" @default.
- W2111243681 hasAuthorship W2111243681A5064211398 @default.
- W2111243681 hasAuthorship W2111243681A5082388083 @default.
- W2111243681 hasBestOaLocation W21112436812 @default.
- W2111243681 hasConcept C114614502 @default.
- W2111243681 hasConcept C118712358 @default.
- W2111243681 hasConcept C121089165 @default.
- W2111243681 hasConcept C121332964 @default.
- W2111243681 hasConcept C138885662 @default.
- W2111243681 hasConcept C160343418 @default.
- W2111243681 hasConcept C199360897 @default.
- W2111243681 hasConcept C202444582 @default.
- W2111243681 hasConcept C203701370 @default.
- W2111243681 hasConcept C2780813799 @default.
- W2111243681 hasConcept C2780990831 @default.
- W2111243681 hasConcept C2781311116 @default.
- W2111243681 hasConcept C33923547 @default.
- W2111243681 hasConcept C41008148 @default.
- W2111243681 hasConcept C41895202 @default.
- W2111243681 hasConcept C62520636 @default.
- W2111243681 hasConcept C73373263 @default.
- W2111243681 hasConcept C9395851 @default.
- W2111243681 hasConceptScore W2111243681C114614502 @default.
- W2111243681 hasConceptScore W2111243681C118712358 @default.
- W2111243681 hasConceptScore W2111243681C121089165 @default.
- W2111243681 hasConceptScore W2111243681C121332964 @default.
- W2111243681 hasConceptScore W2111243681C138885662 @default.
- W2111243681 hasConceptScore W2111243681C160343418 @default.
- W2111243681 hasConceptScore W2111243681C199360897 @default.
- W2111243681 hasConceptScore W2111243681C202444582 @default.
- W2111243681 hasConceptScore W2111243681C203701370 @default.
- W2111243681 hasConceptScore W2111243681C2780813799 @default.
- W2111243681 hasConceptScore W2111243681C2780990831 @default.
- W2111243681 hasConceptScore W2111243681C2781311116 @default.
- W2111243681 hasConceptScore W2111243681C33923547 @default.
- W2111243681 hasConceptScore W2111243681C41008148 @default.
- W2111243681 hasConceptScore W2111243681C41895202 @default.
- W2111243681 hasConceptScore W2111243681C62520636 @default.
- W2111243681 hasConceptScore W2111243681C73373263 @default.
- W2111243681 hasConceptScore W2111243681C9395851 @default.
- W2111243681 hasLocation W21112436811 @default.
- W2111243681 hasLocation W21112436812 @default.
- W2111243681 hasLocation W21112436813 @default.
- W2111243681 hasOpenAccess W2111243681 @default.
- W2111243681 hasPrimaryLocation W21112436811 @default.
- W2111243681 hasRelatedWork W1500759486 @default.
- W2111243681 hasRelatedWork W1550991113 @default.
- W2111243681 hasRelatedWork W2167154330 @default.
- W2111243681 hasRelatedWork W2236139491 @default.
- W2111243681 hasRelatedWork W2902048235 @default.
- W2111243681 hasRelatedWork W3080860077 @default.
- W2111243681 hasRelatedWork W4221156743 @default.
- W2111243681 hasRelatedWork W4225993373 @default.
- W2111243681 hasRelatedWork W4289147182 @default.
- W2111243681 hasRelatedWork W4298098124 @default.
- W2111243681 isParatext "false" @default.
- W2111243681 isRetracted "false" @default.
- W2111243681 magId "2111243681" @default.
- W2111243681 workType "article" @default.