Matches in SemOpenAlex for { <https://semopenalex.org/work/W2111547563> ?p ?o ?g. }
- W2111547563 endingPage "17" @default.
- W2111547563 startingPage "8" @default.
- W2111547563 abstract "Cancer has been characterized as a heterogeneous disease consisting of many different subtypes. The early diagnosis and prognosis of a cancer type have become a necessity in cancer research, as it can facilitate the subsequent clinical management of patients. The importance of classifying cancer patients into high or low risk groups has led many research teams, from the biomedical and the bioinformatics field, to study the application of machine learning (ML) methods. Therefore, these techniques have been utilized as an aim to model the progression and treatment of cancerous conditions. In addition, the ability of ML tools to detect key features from complex datasets reveals their importance. A variety of these techniques, including Artificial Neural Networks (ANNs), Bayesian Networks (BNs), Support Vector Machines (SVMs) and Decision Trees (DTs) have been widely applied in cancer research for the development of predictive models, resulting in effective and accurate decision making. Even though it is evident that the use of ML methods can improve our understanding of cancer progression, an appropriate level of validation is needed in order for these methods to be considered in the everyday clinical practice. In this work, we present a review of recent ML approaches employed in the modeling of cancer progression. The predictive models discussed here are based on various supervised ML techniques as well as on different input features and data samples. Given the growing trend on the application of ML methods in cancer research, we present here the most recent publications that employ these techniques as an aim to model cancer risk or patient outcomes." @default.
- W2111547563 created "2016-06-24" @default.
- W2111547563 creator A5017880834 @default.
- W2111547563 creator A5037813012 @default.
- W2111547563 creator A5057894101 @default.
- W2111547563 creator A5067569191 @default.
- W2111547563 creator A5084550691 @default.
- W2111547563 date "2015-01-01" @default.
- W2111547563 modified "2023-10-16" @default.
- W2111547563 title "Machine learning applications in cancer prognosis and prediction" @default.
- W2111547563 cites W1500572886 @default.
- W2111547563 cites W1519433744 @default.
- W2111547563 cites W1591717158 @default.
- W2111547563 cites W1651586605 @default.
- W2111547563 cites W1960669649 @default.
- W2111547563 cites W1971005400 @default.
- W2111547563 cites W1978761216 @default.
- W2111547563 cites W1983024255 @default.
- W2111547563 cites W1985663400 @default.
- W2111547563 cites W1987776395 @default.
- W2111547563 cites W1989628460 @default.
- W2111547563 cites W1993628165 @default.
- W2111547563 cites W1995199599 @default.
- W2111547563 cites W2007265575 @default.
- W2111547563 cites W2011021469 @default.
- W2111547563 cites W2014510428 @default.
- W2111547563 cites W2017337590 @default.
- W2111547563 cites W2020402396 @default.
- W2111547563 cites W2021100122 @default.
- W2111547563 cites W2025060250 @default.
- W2111547563 cites W2025738103 @default.
- W2111547563 cites W2036839465 @default.
- W2111547563 cites W2048701123 @default.
- W2111547563 cites W2053522428 @default.
- W2111547563 cites W2058089746 @default.
- W2111547563 cites W2062364738 @default.
- W2111547563 cites W2083780116 @default.
- W2111547563 cites W2088338744 @default.
- W2111547563 cites W2089927030 @default.
- W2111547563 cites W2091947792 @default.
- W2111547563 cites W2097554668 @default.
- W2111547563 cites W2105882193 @default.
- W2111547563 cites W2109103446 @default.
- W2111547563 cites W2109896839 @default.
- W2111547563 cites W2111461407 @default.
- W2111547563 cites W2116841457 @default.
- W2111547563 cites W2117692326 @default.
- W2111547563 cites W2118366842 @default.
- W2111547563 cites W2119782683 @default.
- W2111547563 cites W2122227569 @default.
- W2111547563 cites W2123696692 @default.
- W2111547563 cites W2128767954 @default.
- W2111547563 cites W2130338776 @default.
- W2111547563 cites W2132619562 @default.
- W2111547563 cites W2133601033 @default.
- W2111547563 cites W2140218006 @default.
- W2111547563 cites W2148078825 @default.
- W2111547563 cites W2152121590 @default.
- W2111547563 cites W2154362705 @default.
- W2111547563 cites W2155461561 @default.
- W2111547563 cites W2156483112 @default.
- W2111547563 cites W2157132621 @default.
- W2111547563 cites W2163042952 @default.
- W2111547563 cites W2167645795 @default.
- W2111547563 cites W2167769381 @default.
- W2111547563 cites W2170379523 @default.
- W2111547563 cites W2977661550 @default.
- W2111547563 cites W4296886862 @default.
- W2111547563 doi "https://doi.org/10.1016/j.csbj.2014.11.005" @default.
- W2111547563 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4348437" @default.
- W2111547563 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25750696" @default.
- W2111547563 hasPublicationYear "2015" @default.
- W2111547563 type Work @default.
- W2111547563 sameAs 2111547563 @default.
- W2111547563 citedByCount "1838" @default.
- W2111547563 countsByYear W21115475632015 @default.
- W2111547563 countsByYear W21115475632016 @default.
- W2111547563 countsByYear W21115475632017 @default.
- W2111547563 countsByYear W21115475632018 @default.
- W2111547563 countsByYear W21115475632019 @default.
- W2111547563 countsByYear W21115475632020 @default.
- W2111547563 countsByYear W21115475632021 @default.
- W2111547563 countsByYear W21115475632022 @default.
- W2111547563 countsByYear W21115475632023 @default.
- W2111547563 crossrefType "journal-article" @default.
- W2111547563 hasAuthorship W2111547563A5017880834 @default.
- W2111547563 hasAuthorship W2111547563A5037813012 @default.
- W2111547563 hasAuthorship W2111547563A5057894101 @default.
- W2111547563 hasAuthorship W2111547563A5067569191 @default.
- W2111547563 hasAuthorship W2111547563A5084550691 @default.
- W2111547563 hasBestOaLocation W21115475631 @default.
- W2111547563 hasConcept C119857082 @default.
- W2111547563 hasConcept C121608353 @default.
- W2111547563 hasConcept C12267149 @default.
- W2111547563 hasConcept C126322002 @default.
- W2111547563 hasConcept C136197465 @default.
- W2111547563 hasConcept C154945302 @default.
- W2111547563 hasConcept C202444582 @default.