Matches in SemOpenAlex for { <https://semopenalex.org/work/W2111626115> ?p ?o ?g. }
- W2111626115 endingPage "164" @default.
- W2111626115 startingPage "149" @default.
- W2111626115 abstract "To improve the prediction of crop yields at an aggregate scale, we developed a data assimilation-crop modeling framework that incorporates remotely sensed soil moisture and leaf area index (LAI) into a crop model using sequential data assimilation. The core of the framework is an Ensemble Kalman Filter (EnKF) used to control crop model runs, assimilate remote sensing (RS) data and update model state variables. We modified the Decision Support System for Agro-technology Transfer – Cropping System Model (DSSAT-CSM)-Maize model (Jones et al., 2003) to be able to stop and start simulations at any given time in the growing season, such that the EnKF can update model state variables as RS data become available. The data assimilation-crop modeling framework was evaluated against 2003–2009 maize yields in Story County, Iowa, USA, assimilating AMSR-E soil moisture and MODIS-LAI data independently and simultaneously. Assimilating LAI or soil moisture independently slightly improved the correlation of observed and simulated yields (R = 0.51 and 0.50) compared to no data assimilation (open-loop; R = 0.47) but prediction errors improved with reductions in MBE and RMSE by 0.5 and 0.5 Mg ha− 1 respectively for LAI assimilation while these were reduced by 1.8 and 1.1 Mg ha− 1 for soil moisture assimilation. Yield correlation improved more when both soil moisture and LAI were assimilated (R = 0.65) suggesting a cause–effect interaction between soil moisture and LAI, prediction errors (MBE and RMSE) were also reduced by 1.7 and 1.8 Mg ha− 1 with respect to open-loop simulations. Results suggest that assimilation of LAI independently might be preferable when conditions are extremely wet while assimilation of soil moisture + LAI might be more suitable when conditions are more nominal. AMSR-E soil moisture tends to be more biased under the presence of high vegetation (i.e., when crops are fully developed) and that updating rootzone soil moisture by near-surface soil moisture assimilation under very wet conditions could increase the modeled percolation causing excessive nitrogen (N) leaching hence reducing crop yields even with water stress reduced at a minimum due to soil moisture assimilation. However, applying the data assimilation-crop modeling framework strategically by considering a-priori information on climate condition expected during the growing season may improve yield prediction performance substantially, in our case with higher correlation (R = 0.80) and more reductions in MBE and RMSE (2.5 and 3.3 Mg ha− 1) compared to when there is no data assimilation. Scaling AMSR-E soil moisture to the climatology of the model did not improve our data assimilation results because the model is also biased. Better soil moisture products e.g., from Soil Moisture Active Passive (SMAP) mission, may solve the soil moisture data issue in the near future." @default.
- W2111626115 created "2016-06-24" @default.
- W2111626115 creator A5036180338 @default.
- W2111626115 creator A5038053258 @default.
- W2111626115 creator A5070795714 @default.
- W2111626115 creator A5077050845 @default.
- W2111626115 date "2013-11-01" @default.
- W2111626115 modified "2023-10-12" @default.
- W2111626115 title "Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction" @default.
- W2111626115 cites W1518765694 @default.
- W2111626115 cites W1586727249 @default.
- W2111626115 cites W1596439880 @default.
- W2111626115 cites W1881790861 @default.
- W2111626115 cites W1972392924 @default.
- W2111626115 cites W1982029375 @default.
- W2111626115 cites W1987308763 @default.
- W2111626115 cites W1989403585 @default.
- W2111626115 cites W1992915257 @default.
- W2111626115 cites W2009104157 @default.
- W2111626115 cites W2010979673 @default.
- W2111626115 cites W2012354455 @default.
- W2111626115 cites W2024380184 @default.
- W2111626115 cites W2029687274 @default.
- W2111626115 cites W2038136715 @default.
- W2111626115 cites W2039019454 @default.
- W2111626115 cites W2039348932 @default.
- W2111626115 cites W2056378516 @default.
- W2111626115 cites W2073341858 @default.
- W2111626115 cites W2092220788 @default.
- W2111626115 cites W2100401723 @default.
- W2111626115 cites W2104519705 @default.
- W2111626115 cites W2115584735 @default.
- W2111626115 cites W2133126846 @default.
- W2111626115 cites W2135534403 @default.
- W2111626115 cites W2141343012 @default.
- W2111626115 cites W2145097060 @default.
- W2111626115 cites W2146149230 @default.
- W2111626115 cites W2147119488 @default.
- W2111626115 cites W2150285422 @default.
- W2111626115 cites W2158883105 @default.
- W2111626115 cites W2160204743 @default.
- W2111626115 cites W2161557312 @default.
- W2111626115 cites W2164672226 @default.
- W2111626115 cites W2167814716 @default.
- W2111626115 cites W2172996688 @default.
- W2111626115 cites W2174043722 @default.
- W2111626115 cites W2179860363 @default.
- W2111626115 doi "https://doi.org/10.1016/j.rse.2013.07.018" @default.
- W2111626115 hasPublicationYear "2013" @default.
- W2111626115 type Work @default.
- W2111626115 sameAs 2111626115 @default.
- W2111626115 citedByCount "267" @default.
- W2111626115 countsByYear W21116261152014 @default.
- W2111626115 countsByYear W21116261152015 @default.
- W2111626115 countsByYear W21116261152016 @default.
- W2111626115 countsByYear W21116261152017 @default.
- W2111626115 countsByYear W21116261152018 @default.
- W2111626115 countsByYear W21116261152019 @default.
- W2111626115 countsByYear W21116261152020 @default.
- W2111626115 countsByYear W21116261152021 @default.
- W2111626115 countsByYear W21116261152022 @default.
- W2111626115 countsByYear W21116261152023 @default.
- W2111626115 crossrefType "journal-article" @default.
- W2111626115 hasAuthorship W2111626115A5036180338 @default.
- W2111626115 hasAuthorship W2111626115A5038053258 @default.
- W2111626115 hasAuthorship W2111626115A5070795714 @default.
- W2111626115 hasAuthorship W2111626115A5077050845 @default.
- W2111626115 hasBestOaLocation W21116261151 @default.
- W2111626115 hasConcept C105795698 @default.
- W2111626115 hasConcept C126343540 @default.
- W2111626115 hasConcept C127413603 @default.
- W2111626115 hasConcept C153294291 @default.
- W2111626115 hasConcept C157286648 @default.
- W2111626115 hasConcept C187320778 @default.
- W2111626115 hasConcept C205649164 @default.
- W2111626115 hasConcept C206833254 @default.
- W2111626115 hasConcept C24552861 @default.
- W2111626115 hasConcept C24939127 @default.
- W2111626115 hasConcept C25989453 @default.
- W2111626115 hasConcept C33923547 @default.
- W2111626115 hasConcept C39432304 @default.
- W2111626115 hasConcept C62649853 @default.
- W2111626115 hasConcept C6557445 @default.
- W2111626115 hasConcept C79334102 @default.
- W2111626115 hasConcept C86803240 @default.
- W2111626115 hasConceptScore W2111626115C105795698 @default.
- W2111626115 hasConceptScore W2111626115C126343540 @default.
- W2111626115 hasConceptScore W2111626115C127413603 @default.
- W2111626115 hasConceptScore W2111626115C153294291 @default.
- W2111626115 hasConceptScore W2111626115C157286648 @default.
- W2111626115 hasConceptScore W2111626115C187320778 @default.
- W2111626115 hasConceptScore W2111626115C205649164 @default.
- W2111626115 hasConceptScore W2111626115C206833254 @default.
- W2111626115 hasConceptScore W2111626115C24552861 @default.
- W2111626115 hasConceptScore W2111626115C24939127 @default.
- W2111626115 hasConceptScore W2111626115C25989453 @default.
- W2111626115 hasConceptScore W2111626115C33923547 @default.
- W2111626115 hasConceptScore W2111626115C39432304 @default.