Matches in SemOpenAlex for { <https://semopenalex.org/work/W2111645568> ?p ?o ?g. }
- W2111645568 endingPage "1571" @default.
- W2111645568 startingPage "1560" @default.
- W2111645568 abstract "Metacommunity theories attribute different relative degrees of importance to dispersal, environmental filtering, biotic interactions and stochastic processes in community assembly, but the role of spatial scale remains uncertain. Here we used two complementary statistical tools to test: (1) whether or not the patterns of community structure and environmental influences are consistent across resolutions; and (2) whether and how the joint use of two fundamentally different statistical approaches provides a complementary interpretation of results.Grassland plants in the French Alps.We used two approaches across five spatial resolutions (ranging from 1 km × 1 km to 30 km × 30 km): variance partitioning, and analysis of metacommunity structure on the site-by-species incidence matrices. Both methods allow the testing of expected patterns resulting from environmental filtering, but variance partitioning allows the role of dispersal and environmental gradients to be studied, while analysis of the site-by-species metacommunity structure informs an understanding of how environmental filtering occurs and whether or not patterns differ from chance expectation. We also used spatial regressions on species richness to identify relevant environmental factors at each scale and to link results from the two approaches.Major environmental drivers of richness included growing degree-days, temperature, moisture and spatial or temporal heterogeneity. Variance partitioning pointed to an increase in the role of dispersal at coarser resolutions, while metacommunity structure analysis pointed to environmental filtering having an important role at all resolutions through a Clementsian assembly process (i.e. groups of species having similar range boundaries and co-occurring in similar environments).The combination of methods used here allows a better understanding of the forces structuring ecological communities than either one of them used separately. A key aspect in this complementarity is that variance partitioning can detect effects of dispersal whereas metacommunity structure analysis cannot. Moreover, the latter can distinguish between different forms of environmental filtering (e.g. individualistic versus group species responses to environmental gradients)." @default.
- W2111645568 created "2016-06-24" @default.
- W2111645568 creator A5000073067 @default.
- W2111645568 creator A5001034207 @default.
- W2111645568 creator A5039605847 @default.
- W2111645568 creator A5058351465 @default.
- W2111645568 creator A5062379523 @default.
- W2111645568 creator A5072813166 @default.
- W2111645568 creator A5081016891 @default.
- W2111645568 date "2013-04-05" @default.
- W2111645568 modified "2023-10-06" @default.
- W2111645568 title "Disentangling the drivers of metacommunity structure across spatial scales" @default.
- W2111645568 cites W1557648636 @default.
- W2111645568 cites W1874016775 @default.
- W2111645568 cites W1924119632 @default.
- W2111645568 cites W1967075719 @default.
- W2111645568 cites W1969401798 @default.
- W2111645568 cites W1970041912 @default.
- W2111645568 cites W1971198807 @default.
- W2111645568 cites W1985084881 @default.
- W2111645568 cites W1986969344 @default.
- W2111645568 cites W1991419879 @default.
- W2111645568 cites W1994859981 @default.
- W2111645568 cites W2004532752 @default.
- W2111645568 cites W2006460052 @default.
- W2111645568 cites W2019000563 @default.
- W2111645568 cites W2038224223 @default.
- W2111645568 cites W2046826621 @default.
- W2111645568 cites W2052760061 @default.
- W2111645568 cites W2057041211 @default.
- W2111645568 cites W2059012183 @default.
- W2111645568 cites W2063898287 @default.
- W2111645568 cites W2090863412 @default.
- W2111645568 cites W2099742882 @default.
- W2111645568 cites W2102384105 @default.
- W2111645568 cites W2110003979 @default.
- W2111645568 cites W2116643531 @default.
- W2111645568 cites W2118300074 @default.
- W2111645568 cites W2123162799 @default.
- W2111645568 cites W2126294926 @default.
- W2111645568 cites W2129163149 @default.
- W2111645568 cites W2134750825 @default.
- W2111645568 cites W2135710041 @default.
- W2111645568 cites W2142748250 @default.
- W2111645568 cites W2142765585 @default.
- W2111645568 cites W2146688202 @default.
- W2111645568 cites W2148892651 @default.
- W2111645568 cites W2151295828 @default.
- W2111645568 cites W2158606140 @default.
- W2111645568 cites W2170175048 @default.
- W2111645568 cites W4229591924 @default.
- W2111645568 cites W4237143226 @default.
- W2111645568 doi "https://doi.org/10.1111/jbi.12116" @default.
- W2111645568 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4000944" @default.
- W2111645568 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24790288" @default.
- W2111645568 hasPublicationYear "2013" @default.
- W2111645568 type Work @default.
- W2111645568 sameAs 2111645568 @default.
- W2111645568 citedByCount "110" @default.
- W2111645568 countsByYear W21116455682013 @default.
- W2111645568 countsByYear W21116455682014 @default.
- W2111645568 countsByYear W21116455682015 @default.
- W2111645568 countsByYear W21116455682016 @default.
- W2111645568 countsByYear W21116455682017 @default.
- W2111645568 countsByYear W21116455682018 @default.
- W2111645568 countsByYear W21116455682019 @default.
- W2111645568 countsByYear W21116455682020 @default.
- W2111645568 countsByYear W21116455682021 @default.
- W2111645568 countsByYear W21116455682022 @default.
- W2111645568 countsByYear W21116455682023 @default.
- W2111645568 crossrefType "journal-article" @default.
- W2111645568 hasAuthorship W2111645568A5000073067 @default.
- W2111645568 hasAuthorship W2111645568A5001034207 @default.
- W2111645568 hasAuthorship W2111645568A5039605847 @default.
- W2111645568 hasAuthorship W2111645568A5058351465 @default.
- W2111645568 hasAuthorship W2111645568A5062379523 @default.
- W2111645568 hasAuthorship W2111645568A5072813166 @default.
- W2111645568 hasAuthorship W2111645568A5081016891 @default.
- W2111645568 hasBestOaLocation W21116455683 @default.
- W2111645568 hasConcept C121955636 @default.
- W2111645568 hasConcept C133079900 @default.
- W2111645568 hasConcept C144024400 @default.
- W2111645568 hasConcept C144133560 @default.
- W2111645568 hasConcept C149923435 @default.
- W2111645568 hasConcept C158709400 @default.
- W2111645568 hasConcept C159985019 @default.
- W2111645568 hasConcept C18665432 @default.
- W2111645568 hasConcept C18903297 @default.
- W2111645568 hasConcept C192562407 @default.
- W2111645568 hasConcept C196083921 @default.
- W2111645568 hasConcept C204323151 @default.
- W2111645568 hasConcept C205649164 @default.
- W2111645568 hasConcept C2778899818 @default.
- W2111645568 hasConcept C2908647359 @default.
- W2111645568 hasConcept C47559259 @default.
- W2111645568 hasConcept C53565203 @default.
- W2111645568 hasConcept C86803240 @default.
- W2111645568 hasConceptScore W2111645568C121955636 @default.