Matches in SemOpenAlex for { <https://semopenalex.org/work/W211169312> ?p ?o ?g. }
- W211169312 endingPage "524" @default.
- W211169312 startingPage "417" @default.
- W211169312 abstract "Exploration oriented seismic modeling requires accurate and efficient methods. A variety of direct modeling methods has been extended and improved within the framework of the EOS-1 project. The aim is to calculate seismograms of the full wavefield in complex subsurface models which are related to exploration targets. General Finite-Element Method (FEM) programs for 2D and 3D wave propagation simulation have been implemented. A hybrid method using spectral elements has been developed for the 2D acoustic and elastic case and for the 3D acoustic case. Curved elements have been successfully introduced into the 2D elastic scheme for the description of irregular interfaces. The method shows a fast convergence rate and the high accuracy typical of spectral methods. In the classical FEM as well as in the spectral-element method (SPEM) a domain decomposition method based on a sub-structuring concept has successfully been implemented. The efficiency is superior to that of the previous spectral element code, both in computer memory usage and computer time. In higher order finite-difference modeling (FDM) emphasis is put on schemes with varying grid spacing. This allows to represent areas in which a high spatial resolution is required or the wave propagation velocities are low by a fine computational mesh without the need to extend this fine mesh to other regions. This results in a reduction of the computational effort and memory requirement. 2D and 3D Fourier Spectral Modeling (FSM) schemes for acoustic and for elastic media have been developed for regular and staggered grid techniques. A combination of a regular grid in the vertical direction and a staggered grid in the horizontal direction improves the results obtained for an elastic half-space with a free surface. A 2D acoustic Fourier modeling scheme in generalized curvilinear coordinates has been developed. With this scheme, there are significantly fewer spurious diffractions than with ordinary Cartesian-coordinate modeling. Stable Chebyshev Spectral Modeling (CSM) schemes have been developed for 2D and 3D elastic media. Boundary conditions can be easily implemented in the CSM. This allows the high-accuracy simulation of the seismic response of composite fluid/solid media as well as of a free surface, which is not possible for FSM. Both, 2D and 3D codes have been extended to general anisotropy and interesting case studies have been performed for anisotropic media with a free surface. General anisotropy cannot be modeled by finite-difference methods. Therefore the Chebyshev Spectral Method is superior to FDM in this respect. The elastic schemes allow to take surface topography into account, something which is also not possible in FD-schemes. 3D acoustic and elastic modeling schemes in cylindrical coordinates have been developed for borehole modeling. The computational domain is divided into cylindrical subdomains in order to improve the stability conditions and to compensate for increasing angular grid spacing with increasing radius. A general and consistent constitutive equation for anisotropic viscoelastic media has been studied. The direction-dependent quality factors obtained in this way have been compared to those measured in seismograms obtained by numerical modeling. A modeling code has been developed for 3D viscoelastic media. A time integration algorithm for viscoelastic media modeling based on the approximation of the evolution operator by polynomial interpolation has been developed and tested. The new approach is two times faster than second-order differencing in time. The seismic forward modeling methods developed in the EOS-1 project were successfully applied to simulate seismic wave propagation in models of the subsurface in actual exploration areas. Various FORTRAN packages for analytic reference solutions have been developed, originally for the use in several project groups. They are a valuable tool for the evaluation of numerical methods. In order to solve the inverse problem, an inversion method based on integral equations has been developed and applied to synthetic data. Further, a new algorithm for the stochastic improvement of the tomographic inversion has been developed and tested on synthetic data. Stochastic conditions are taken into account to guide the inversion process. The algorithm was extended to the tomographic reconstruction of the 3D velocity fields from a set of cross-well views." @default.
- W211169312 created "2016-06-24" @default.
- W211169312 creator A5009500513 @default.
- W211169312 creator A5010884586 @default.
- W211169312 creator A5018017081 @default.
- W211169312 creator A5019078459 @default.
- W211169312 creator A5034850473 @default.
- W211169312 creator A5036954000 @default.
- W211169312 creator A5037539945 @default.
- W211169312 creator A5039163277 @default.
- W211169312 creator A5043476240 @default.
- W211169312 creator A5054511666 @default.
- W211169312 creator A5060745159 @default.
- W211169312 creator A5062776426 @default.
- W211169312 creator A5071667259 @default.
- W211169312 creator A5073574012 @default.
- W211169312 creator A5075615834 @default.
- W211169312 creator A5076880181 @default.
- W211169312 creator A5084445474 @default.
- W211169312 creator A5089546129 @default.
- W211169312 creator A5091655499 @default.
- W211169312 date "1994-01-01" @default.
- W211169312 modified "2023-09-27" @default.
- W211169312 title "EXPLORATION ORIENTED SEISMIC MODELING AND INVERSION" @default.
- W211169312 cites W1481988388 @default.
- W211169312 cites W1670517505 @default.
- W211169312 cites W1932553671 @default.
- W211169312 cites W1977341879 @default.
- W211169312 cites W1985409219 @default.
- W211169312 cites W1989167969 @default.
- W211169312 cites W2001980233 @default.
- W211169312 cites W2003226931 @default.
- W211169312 cites W2004481558 @default.
- W211169312 cites W2011810629 @default.
- W211169312 cites W2020999234 @default.
- W211169312 cites W2025302942 @default.
- W211169312 cites W2032891922 @default.
- W211169312 cites W2048479218 @default.
- W211169312 cites W2048529067 @default.
- W211169312 cites W2058395393 @default.
- W211169312 cites W2061118902 @default.
- W211169312 cites W2069926287 @default.
- W211169312 cites W2072843975 @default.
- W211169312 cites W2077967009 @default.
- W211169312 cites W2078768478 @default.
- W211169312 cites W2080953910 @default.
- W211169312 cites W2086038078 @default.
- W211169312 cites W2091872229 @default.
- W211169312 cites W2097277498 @default.
- W211169312 cites W2107569287 @default.
- W211169312 cites W2114220616 @default.
- W211169312 cites W2116650380 @default.
- W211169312 cites W2123409240 @default.
- W211169312 cites W2123731425 @default.
- W211169312 cites W2138395310 @default.
- W211169312 cites W2143146506 @default.
- W211169312 cites W2143616788 @default.
- W211169312 cites W2144338873 @default.
- W211169312 cites W2149381692 @default.
- W211169312 cites W2150594795 @default.
- W211169312 cites W2155510609 @default.
- W211169312 cites W2156923593 @default.
- W211169312 cites W2157547661 @default.
- W211169312 cites W2158385152 @default.
- W211169312 cites W2172266042 @default.
- W211169312 cites W2332012219 @default.
- W211169312 cites W2337150822 @default.
- W211169312 cites W2383650047 @default.
- W211169312 cites W2905074708 @default.
- W211169312 doi "https://doi.org/10.1016/b978-0-08-042419-4.50011-7" @default.
- W211169312 hasPublicationYear "1994" @default.
- W211169312 type Work @default.
- W211169312 sameAs 211169312 @default.
- W211169312 citedByCount "0" @default.
- W211169312 crossrefType "book-chapter" @default.
- W211169312 hasAuthorship W211169312A5009500513 @default.
- W211169312 hasAuthorship W211169312A5010884586 @default.
- W211169312 hasAuthorship W211169312A5018017081 @default.
- W211169312 hasAuthorship W211169312A5019078459 @default.
- W211169312 hasAuthorship W211169312A5034850473 @default.
- W211169312 hasAuthorship W211169312A5036954000 @default.
- W211169312 hasAuthorship W211169312A5037539945 @default.
- W211169312 hasAuthorship W211169312A5039163277 @default.
- W211169312 hasAuthorship W211169312A5043476240 @default.
- W211169312 hasAuthorship W211169312A5054511666 @default.
- W211169312 hasAuthorship W211169312A5060745159 @default.
- W211169312 hasAuthorship W211169312A5062776426 @default.
- W211169312 hasAuthorship W211169312A5071667259 @default.
- W211169312 hasAuthorship W211169312A5073574012 @default.
- W211169312 hasAuthorship W211169312A5075615834 @default.
- W211169312 hasAuthorship W211169312A5076880181 @default.
- W211169312 hasAuthorship W211169312A5084445474 @default.
- W211169312 hasAuthorship W211169312A5089546129 @default.
- W211169312 hasAuthorship W211169312A5091655499 @default.
- W211169312 hasConcept C102519508 @default.
- W211169312 hasConcept C109007969 @default.
- W211169312 hasConcept C11413529 @default.
- W211169312 hasConcept C127313418 @default.