Matches in SemOpenAlex for { <https://semopenalex.org/work/W2112339712> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2112339712 endingPage "333" @default.
- W2112339712 startingPage "321" @default.
- W2112339712 abstract "The theory of variational bicomplexes was established at the end of the seventies by several authors [2, 17, 23, 26, 29–32]. The idea is that the operations which take a Lagrangian into its Euler–Lagrange morphism [9, 10, 12, 24] and an Euler–Lagrange morphism into its Helmholtz' conditions of local variationality [1–3, 7, 11, 13, 18, 27] are morphisms of a (long) exact sheaf sequence. This viewpoint overcomes several problems of Lagrangian formulations in mechanics and field theories [21, 28]. To avoid technical difficulties variational bicomplexes were formulated over the space of infinite jets of a fibred manifold. But in this formalism the information relative to the order of the jet where objects are defined is lost.We refer to the recent formulation of variational bicomplexes on finite order jet spaces [13]. Here, a finite order variational sequence is obtained by quotienting the de Rham sequence on a finite order jet space with an intrinsically defined sub-sequence, whose choice is inspired by the calculus of variations. It is important to find an isomorphism of the quotient sequence with a sequence of sheaves of ‘concrete’ sections of some vector bundle. This task has already been faced locally [22, 25] and intrinsically [33] in the case of one independent variable.In this paper, we give an intrinsic isomorphism of the variational sequence (in the general case of n independent variables) with a sequence which is made by sheaves of forms on a jet space of minimal order. This yields new natural solutions to problems like the minimal order Lagrangian corresponding to a locally variational Euler–Lagrange morphism and the search of variationally trivial Lagrangians. Moreover, we give a new intrinsic formulation of Helmholtz' local variationality conditions, proving the existence of a new intrinsic geometric object which, for an Euler–Lagrange morphism, plays a role analogous to that of the momentum of a Lagrangian." @default.
- W2112339712 created "2016-06-24" @default.
- W2112339712 creator A5034914742 @default.
- W2112339712 date "1999-01-01" @default.
- W2112339712 modified "2023-09-24" @default.
- W2112339712 title "Finite order variational bicomplexes" @default.
- W2112339712 cites W1486912472 @default.
- W2112339712 cites W1513060653 @default.
- W2112339712 cites W1596652901 @default.
- W2112339712 cites W1982183960 @default.
- W2112339712 cites W1992362557 @default.
- W2112339712 cites W201815764 @default.
- W2112339712 cites W2040941018 @default.
- W2112339712 cites W2057953716 @default.
- W2112339712 cites W2059014696 @default.
- W2112339712 cites W2069260215 @default.
- W2112339712 cites W2090336537 @default.
- W2112339712 cites W2136059175 @default.
- W2112339712 cites W2200157046 @default.
- W2112339712 cites W2571255480 @default.
- W2112339712 cites W2733704070 @default.
- W2112339712 cites W61125094 @default.
- W2112339712 cites W91752049 @default.
- W2112339712 doi "https://doi.org/10.1017/s0305004198002837" @default.
- W2112339712 hasPublicationYear "1999" @default.
- W2112339712 type Work @default.
- W2112339712 sameAs 2112339712 @default.
- W2112339712 citedByCount "26" @default.
- W2112339712 countsByYear W21123397122015 @default.
- W2112339712 countsByYear W21123397122022 @default.
- W2112339712 crossrefType "journal-article" @default.
- W2112339712 hasAuthorship W2112339712A5034914742 @default.
- W2112339712 hasConcept C134306372 @default.
- W2112339712 hasConcept C137212723 @default.
- W2112339712 hasConcept C202444582 @default.
- W2112339712 hasConcept C2778112365 @default.
- W2112339712 hasConcept C2780390204 @default.
- W2112339712 hasConcept C33923547 @default.
- W2112339712 hasConcept C54355233 @default.
- W2112339712 hasConcept C86803240 @default.
- W2112339712 hasConcept C97985569 @default.
- W2112339712 hasConceptScore W2112339712C134306372 @default.
- W2112339712 hasConceptScore W2112339712C137212723 @default.
- W2112339712 hasConceptScore W2112339712C202444582 @default.
- W2112339712 hasConceptScore W2112339712C2778112365 @default.
- W2112339712 hasConceptScore W2112339712C2780390204 @default.
- W2112339712 hasConceptScore W2112339712C33923547 @default.
- W2112339712 hasConceptScore W2112339712C54355233 @default.
- W2112339712 hasConceptScore W2112339712C86803240 @default.
- W2112339712 hasConceptScore W2112339712C97985569 @default.
- W2112339712 hasIssue "2" @default.
- W2112339712 hasLocation W21123397121 @default.
- W2112339712 hasOpenAccess W2112339712 @default.
- W2112339712 hasPrimaryLocation W21123397121 @default.
- W2112339712 hasRelatedWork W1718701227 @default.
- W2112339712 hasRelatedWork W1992729023 @default.
- W2112339712 hasRelatedWork W2093857802 @default.
- W2112339712 hasRelatedWork W2142946601 @default.
- W2112339712 hasRelatedWork W2158253985 @default.
- W2112339712 hasRelatedWork W2963288673 @default.
- W2112339712 hasRelatedWork W3126773016 @default.
- W2112339712 hasRelatedWork W37373053 @default.
- W2112339712 hasRelatedWork W4281745187 @default.
- W2112339712 hasRelatedWork W4375947497 @default.
- W2112339712 hasVolume "125" @default.
- W2112339712 isParatext "false" @default.
- W2112339712 isRetracted "false" @default.
- W2112339712 magId "2112339712" @default.
- W2112339712 workType "article" @default.