Matches in SemOpenAlex for { <https://semopenalex.org/work/W2112350001> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2112350001 endingPage "254" @default.
- W2112350001 startingPage "247" @default.
- W2112350001 abstract "Objective(s) Observational database research frequently relies on imperfect administrative markers to determine comorbid status, and it is difficult to infer to what extent the associated misclassification impacts validity in multivariable analyses. The effect that imperfect markers of disease will have on validity in situations in which researchers attempt to match populations that have strong baseline health differences is underemphasized as a limitation in some otherwise high-quality observational studies. The present simulations were designed as a quantitative demonstration of the importance of this common and underappreciated issue. Design Two groups of Monte Carlo simulations were performed. The first demonstrated the degree to which controlling for a series of imperfect markers of disease between different populations taking 2 hypothetically harmless drugs would lead to spurious associations between drug assignment and mortality. The second Monte Carlo simulation applied this principle to a recent study in the field of anesthesiology that purported to show increased perioperative mortality in patients taking metoprolol versus atenolol. Setting/Participants/Interventions None. Measurements and Main Results Simulation 1: High type-1 error (ie, false positive findings of an independent association between drug assignment and mortality) was observed as sensitivity and specificity declined and as systematic differences in disease prevalence increased. Simulation 2: Propensity score matching across several imperfect markers was unlikely to eliminate important baseline health disparities in the referenced study. Conclusions In situations in which large baseline health disparities exist between populations, matching on imperfect markers of disease may result in strong bias away from the null hypothesis. Observational database research frequently relies on imperfect administrative markers to determine comorbid status, and it is difficult to infer to what extent the associated misclassification impacts validity in multivariable analyses. The effect that imperfect markers of disease will have on validity in situations in which researchers attempt to match populations that have strong baseline health differences is underemphasized as a limitation in some otherwise high-quality observational studies. The present simulations were designed as a quantitative demonstration of the importance of this common and underappreciated issue. Two groups of Monte Carlo simulations were performed. The first demonstrated the degree to which controlling for a series of imperfect markers of disease between different populations taking 2 hypothetically harmless drugs would lead to spurious associations between drug assignment and mortality. The second Monte Carlo simulation applied this principle to a recent study in the field of anesthesiology that purported to show increased perioperative mortality in patients taking metoprolol versus atenolol. None. Simulation 1: High type-1 error (ie, false positive findings of an independent association between drug assignment and mortality) was observed as sensitivity and specificity declined and as systematic differences in disease prevalence increased. Simulation 2: Propensity score matching across several imperfect markers was unlikely to eliminate important baseline health disparities in the referenced study. In situations in which large baseline health disparities exist between populations, matching on imperfect markers of disease may result in strong bias away from the null hypothesis." @default.
- W2112350001 created "2016-06-24" @default.
- W2112350001 creator A5024925954 @default.
- W2112350001 creator A5086804517 @default.
- W2112350001 creator A5088046536 @default.
- W2112350001 date "2014-04-01" @default.
- W2112350001 modified "2023-10-16" @default.
- W2112350001 title "The Problem of Controlling for Imperfectly Measured Confounders on Dissimilar Populations: A Database Simulation Study" @default.
- W2112350001 cites W1602443498 @default.
- W2112350001 cites W1900651926 @default.
- W2112350001 cites W1964114625 @default.
- W2112350001 cites W1964475341 @default.
- W2112350001 cites W2007372028 @default.
- W2112350001 cites W2033925298 @default.
- W2112350001 cites W2034026922 @default.
- W2112350001 cites W2036814259 @default.
- W2112350001 cites W2037668591 @default.
- W2112350001 cites W2039215358 @default.
- W2112350001 cites W2053178989 @default.
- W2112350001 cites W2062655152 @default.
- W2112350001 cites W2081173561 @default.
- W2112350001 cites W2100940155 @default.
- W2112350001 cites W2102276867 @default.
- W2112350001 cites W2121690051 @default.
- W2112350001 cites W2133711448 @default.
- W2112350001 cites W2150291618 @default.
- W2112350001 cites W2171970820 @default.
- W2112350001 cites W2320240088 @default.
- W2112350001 cites W2548247906 @default.
- W2112350001 cites W4237025237 @default.
- W2112350001 doi "https://doi.org/10.1053/j.jvca.2013.03.014" @default.
- W2112350001 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3926910" @default.
- W2112350001 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23962461" @default.
- W2112350001 hasPublicationYear "2014" @default.
- W2112350001 type Work @default.
- W2112350001 sameAs 2112350001 @default.
- W2112350001 citedByCount "16" @default.
- W2112350001 countsByYear W21123500012014 @default.
- W2112350001 countsByYear W21123500012015 @default.
- W2112350001 countsByYear W21123500012016 @default.
- W2112350001 countsByYear W21123500012017 @default.
- W2112350001 countsByYear W21123500012018 @default.
- W2112350001 countsByYear W21123500012020 @default.
- W2112350001 crossrefType "journal-article" @default.
- W2112350001 hasAuthorship W2112350001A5024925954 @default.
- W2112350001 hasAuthorship W2112350001A5086804517 @default.
- W2112350001 hasAuthorship W2112350001A5088046536 @default.
- W2112350001 hasBestOaLocation W21123500012 @default.
- W2112350001 hasConcept C105795698 @default.
- W2112350001 hasConcept C118552586 @default.
- W2112350001 hasConcept C126322002 @default.
- W2112350001 hasConcept C142724271 @default.
- W2112350001 hasConcept C158600405 @default.
- W2112350001 hasConcept C17923572 @default.
- W2112350001 hasConcept C23131810 @default.
- W2112350001 hasConcept C27415008 @default.
- W2112350001 hasConcept C33923547 @default.
- W2112350001 hasConcept C71924100 @default.
- W2112350001 hasConcept C77350462 @default.
- W2112350001 hasConcept C95190672 @default.
- W2112350001 hasConcept C97256817 @default.
- W2112350001 hasConceptScore W2112350001C105795698 @default.
- W2112350001 hasConceptScore W2112350001C118552586 @default.
- W2112350001 hasConceptScore W2112350001C126322002 @default.
- W2112350001 hasConceptScore W2112350001C142724271 @default.
- W2112350001 hasConceptScore W2112350001C158600405 @default.
- W2112350001 hasConceptScore W2112350001C17923572 @default.
- W2112350001 hasConceptScore W2112350001C23131810 @default.
- W2112350001 hasConceptScore W2112350001C27415008 @default.
- W2112350001 hasConceptScore W2112350001C33923547 @default.
- W2112350001 hasConceptScore W2112350001C71924100 @default.
- W2112350001 hasConceptScore W2112350001C77350462 @default.
- W2112350001 hasConceptScore W2112350001C95190672 @default.
- W2112350001 hasConceptScore W2112350001C97256817 @default.
- W2112350001 hasIssue "2" @default.
- W2112350001 hasLocation W21123500011 @default.
- W2112350001 hasLocation W21123500012 @default.
- W2112350001 hasLocation W21123500013 @default.
- W2112350001 hasLocation W21123500014 @default.
- W2112350001 hasOpenAccess W2112350001 @default.
- W2112350001 hasPrimaryLocation W21123500011 @default.
- W2112350001 hasRelatedWork W1989803330 @default.
- W2112350001 hasRelatedWork W2009428399 @default.
- W2112350001 hasRelatedWork W2346844326 @default.
- W2112350001 hasRelatedWork W2540939911 @default.
- W2112350001 hasRelatedWork W3208489104 @default.
- W2112350001 hasRelatedWork W4221166320 @default.
- W2112350001 hasRelatedWork W4281286690 @default.
- W2112350001 hasRelatedWork W4286896224 @default.
- W2112350001 hasRelatedWork W4296012301 @default.
- W2112350001 hasRelatedWork W4312375361 @default.
- W2112350001 hasVolume "28" @default.
- W2112350001 isParatext "false" @default.
- W2112350001 isRetracted "false" @default.
- W2112350001 magId "2112350001" @default.
- W2112350001 workType "article" @default.