Matches in SemOpenAlex for { <https://semopenalex.org/work/W2112556081> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2112556081 abstract "This paper presents methods for mixing feature sets in sentence-level sentiment analysis where a sentence is classified into one of three classes: positive, negative, and neutral. Motivated by the need to classify sentences in Korean whose sentiment-revealing expressions tend to have different effects according to their syntactic categories, we employed a language modeling (LM) approach with 162 different LMs based on syntactic categories that are effectively combined with a logistic regression classifier. The experimental results show that this approach significantly outperforms clue-based SVM classifiers. The enumeration of feature types arising from the LMs for the logistic regression classifier allowed us to show that domain specific models can be smoothed with a general model and that attaching a syntactic category to a feature helps improving effectiveness. The classification results are further improved by applying a clue-based classifier. The rationale behind this two-step process is to classify sentences with a relatively conservative classifier in picking positive and negative sentences and to apply a high-precision classifier to the sentences in the neutral class." @default.
- W2112556081 created "2016-06-24" @default.
- W2112556081 creator A5001914535 @default.
- W2112556081 creator A5018321415 @default.
- W2112556081 creator A5047504790 @default.
- W2112556081 creator A5072571713 @default.
- W2112556081 creator A5086035404 @default.
- W2112556081 date "2009-09-01" @default.
- W2112556081 modified "2023-09-24" @default.
- W2112556081 title "Generating and mixing feature sets from language models for sentiment classification" @default.
- W2112556081 cites W122553268 @default.
- W2112556081 cites W1570448133 @default.
- W2112556081 cites W1951269370 @default.
- W2112556081 cites W1965555277 @default.
- W2112556081 cites W2005624335 @default.
- W2112556081 cites W2080558111 @default.
- W2112556081 cites W2097726431 @default.
- W2112556081 cites W2102134623 @default.
- W2112556081 cites W2120623102 @default.
- W2112556081 cites W2166706824 @default.
- W2112556081 cites W2168625136 @default.
- W2112556081 cites W2184342832 @default.
- W2112556081 cites W2296006172 @default.
- W2112556081 cites W2966207845 @default.
- W2112556081 cites W3146306708 @default.
- W2112556081 doi "https://doi.org/10.1109/nlpke.2009.5313746" @default.
- W2112556081 hasPublicationYear "2009" @default.
- W2112556081 type Work @default.
- W2112556081 sameAs 2112556081 @default.
- W2112556081 citedByCount "0" @default.
- W2112556081 crossrefType "proceedings-article" @default.
- W2112556081 hasAuthorship W2112556081A5001914535 @default.
- W2112556081 hasAuthorship W2112556081A5018321415 @default.
- W2112556081 hasAuthorship W2112556081A5047504790 @default.
- W2112556081 hasAuthorship W2112556081A5072571713 @default.
- W2112556081 hasAuthorship W2112556081A5086035404 @default.
- W2112556081 hasConcept C119857082 @default.
- W2112556081 hasConcept C12267149 @default.
- W2112556081 hasConcept C139532973 @default.
- W2112556081 hasConcept C151956035 @default.
- W2112556081 hasConcept C153180895 @default.
- W2112556081 hasConcept C154945302 @default.
- W2112556081 hasConcept C204321447 @default.
- W2112556081 hasConcept C2777530160 @default.
- W2112556081 hasConcept C41008148 @default.
- W2112556081 hasConcept C66402592 @default.
- W2112556081 hasConcept C95623464 @default.
- W2112556081 hasConceptScore W2112556081C119857082 @default.
- W2112556081 hasConceptScore W2112556081C12267149 @default.
- W2112556081 hasConceptScore W2112556081C139532973 @default.
- W2112556081 hasConceptScore W2112556081C151956035 @default.
- W2112556081 hasConceptScore W2112556081C153180895 @default.
- W2112556081 hasConceptScore W2112556081C154945302 @default.
- W2112556081 hasConceptScore W2112556081C204321447 @default.
- W2112556081 hasConceptScore W2112556081C2777530160 @default.
- W2112556081 hasConceptScore W2112556081C41008148 @default.
- W2112556081 hasConceptScore W2112556081C66402592 @default.
- W2112556081 hasConceptScore W2112556081C95623464 @default.
- W2112556081 hasLocation W21125560811 @default.
- W2112556081 hasOpenAccess W2112556081 @default.
- W2112556081 hasPrimaryLocation W21125560811 @default.
- W2112556081 hasRelatedWork W159818489 @default.
- W2112556081 hasRelatedWork W1604147311 @default.
- W2112556081 hasRelatedWork W198651829 @default.
- W2112556081 hasRelatedWork W1990482343 @default.
- W2112556081 hasRelatedWork W2123415724 @default.
- W2112556081 hasRelatedWork W2126743576 @default.
- W2112556081 hasRelatedWork W2370195175 @default.
- W2112556081 hasRelatedWork W2395334507 @default.
- W2112556081 hasRelatedWork W2556605533 @default.
- W2112556081 hasRelatedWork W2758288458 @default.
- W2112556081 hasRelatedWork W2758419901 @default.
- W2112556081 hasRelatedWork W2767201616 @default.
- W2112556081 hasRelatedWork W2803483156 @default.
- W2112556081 hasRelatedWork W2893742890 @default.
- W2112556081 hasRelatedWork W2907508720 @default.
- W2112556081 hasRelatedWork W2963874170 @default.
- W2112556081 hasRelatedWork W3026290311 @default.
- W2112556081 hasRelatedWork W436080788 @default.
- W2112556081 hasRelatedWork W1543132580 @default.
- W2112556081 hasRelatedWork W2833807811 @default.
- W2112556081 isParatext "false" @default.
- W2112556081 isRetracted "false" @default.
- W2112556081 magId "2112556081" @default.
- W2112556081 workType "article" @default.