Matches in SemOpenAlex for { <https://semopenalex.org/work/W2112674101> ?p ?o ?g. }
- W2112674101 endingPage "696" @default.
- W2112674101 startingPage "673" @default.
- W2112674101 abstract "Spatial variability in a crop field creates a need for precision agriculture. Economical and rapid means of identifying spatial variability is obtained through the use of geotechnology (remotely sensed images of the crop field, image processing, GIS modeling approach, and GPS usage) and data mining techniques for model development. Higher-end image processing techniques are followed to establish more precision. The goal of this paper was to investigate the strength of key spectral vegetation indices for agricultural crop yield prediction using neural network techniques. Four widely used spectral indices were investigated in a study of irrigated corn crop yields in the Oakes Irrigation Test Area research site of North Dakota, USA. These indices were: (a) red and near-infrared (NIR) based normalized difference vegetation index (NDVI), (b) green and NIR based green vegetation index (GVI), (c) red and NIR based soil adjusted vegetation index (SAVI), and (d) red and NIR based perpendicular vegetation index (PVI). These four indices were investigated for corn yield during 3 years (1998, 1999, and 2001) and for the pooled data of these 3 years. Initially, Back-propagation Neural Network (BPNN) models were developed, including 16 models (4 indices * 4 years including the data from the pooled years) to test for the efficiency determination of those four vegetation indices in corn crop yield prediction. The corn yield was best predicted using BPNN models that used the means and standard deviations of PVI grid images. In all three years, it provided higher prediction accuracies, coefficient of determination (r2), and lower standard error of prediction than the models involving GVI, NDVI, and SAVI image information. The GVI, NDVI, and SAVI models for all three years provided average testing prediction accuracies of 24.26% to 94.85%, 19.36% to 95.04%, and 19.24% to 95.04%, respectively while the PVI models for all three years provided average testing prediction accuracies of 83.50% to 96.04%. The PVI pool model provided better average testing prediction accuracy of 94% with respect to other vegetation models, for which it ranged from 89–93%. Similarly, the PVI pool model provided coefficient of determination (r2) value of 0.45 as compared to 0.31–0.37 for other index models. Log10 data transformation technique was used to enhance the prediction ability of the PVI models of years 1998, 1999, and 2001 as it was chosen as the preferred index. Another model (Transformed PVI (Pool)) was developed using the log10 transformed PVI image information to show its global application. The transformed PVI models provided average corn yield prediction accuracies of 90%, 97%, and 98% for years 1998, 1999, and 2001, respectively. The pool PVI transformed model provided as average testing accuracy of 93% along with r2 value of 0.72 and standard error of prediction of 0.05 t/ha." @default.
- W2112674101 created "2016-06-24" @default.
- W2112674101 creator A5044734782 @default.
- W2112674101 creator A5062796921 @default.
- W2112674101 creator A5077557188 @default.
- W2112674101 date "2010-03-01" @default.
- W2112674101 modified "2023-10-03" @default.
- W2112674101 title "Application of Vegetation Indices for Agricultural Crop Yield Prediction Using Neural Network Techniques" @default.
- W2112674101 cites W124042149 @default.
- W2112674101 cites W1571001096 @default.
- W2112674101 cites W1607241334 @default.
- W2112674101 cites W1964217023 @default.
- W2112674101 cites W1968496754 @default.
- W2112674101 cites W1971977120 @default.
- W2112674101 cites W1979636379 @default.
- W2112674101 cites W1998451497 @default.
- W2112674101 cites W2029258345 @default.
- W2112674101 cites W2030370010 @default.
- W2112674101 cites W2056352756 @default.
- W2112674101 cites W2058147438 @default.
- W2112674101 cites W2058709694 @default.
- W2112674101 cites W2075021380 @default.
- W2112674101 cites W2075899207 @default.
- W2112674101 cites W2078078152 @default.
- W2112674101 cites W2080527151 @default.
- W2112674101 cites W2084549044 @default.
- W2112674101 cites W2086342036 @default.
- W2112674101 cites W2111839312 @default.
- W2112674101 cites W2113956708 @default.
- W2112674101 cites W2123460937 @default.
- W2112674101 cites W2152104334 @default.
- W2112674101 cites W2158436879 @default.
- W2112674101 cites W2182318748 @default.
- W2112674101 doi "https://doi.org/10.3390/rs2030673" @default.
- W2112674101 hasPublicationYear "2010" @default.
- W2112674101 type Work @default.
- W2112674101 sameAs 2112674101 @default.
- W2112674101 citedByCount "256" @default.
- W2112674101 countsByYear W21126741012012 @default.
- W2112674101 countsByYear W21126741012013 @default.
- W2112674101 countsByYear W21126741012014 @default.
- W2112674101 countsByYear W21126741012015 @default.
- W2112674101 countsByYear W21126741012016 @default.
- W2112674101 countsByYear W21126741012017 @default.
- W2112674101 countsByYear W21126741012018 @default.
- W2112674101 countsByYear W21126741012019 @default.
- W2112674101 countsByYear W21126741012020 @default.
- W2112674101 countsByYear W21126741012021 @default.
- W2112674101 countsByYear W21126741012022 @default.
- W2112674101 countsByYear W21126741012023 @default.
- W2112674101 crossrefType "journal-article" @default.
- W2112674101 hasAuthorship W2112674101A5044734782 @default.
- W2112674101 hasAuthorship W2112674101A5062796921 @default.
- W2112674101 hasAuthorship W2112674101A5077557188 @default.
- W2112674101 hasBestOaLocation W21126741011 @default.
- W2112674101 hasConcept C118518473 @default.
- W2112674101 hasConcept C119857082 @default.
- W2112674101 hasConcept C120217122 @default.
- W2112674101 hasConcept C126343540 @default.
- W2112674101 hasConcept C127413603 @default.
- W2112674101 hasConcept C142724271 @default.
- W2112674101 hasConcept C1549246 @default.
- W2112674101 hasConcept C166957645 @default.
- W2112674101 hasConcept C205649164 @default.
- W2112674101 hasConcept C25989453 @default.
- W2112674101 hasConcept C2776133958 @default.
- W2112674101 hasConcept C2780376076 @default.
- W2112674101 hasConcept C39432304 @default.
- W2112674101 hasConcept C41008148 @default.
- W2112674101 hasConcept C50644808 @default.
- W2112674101 hasConcept C62649853 @default.
- W2112674101 hasConcept C6557445 @default.
- W2112674101 hasConcept C71924100 @default.
- W2112674101 hasConcept C78869512 @default.
- W2112674101 hasConcept C86803240 @default.
- W2112674101 hasConcept C88463610 @default.
- W2112674101 hasConceptScore W2112674101C118518473 @default.
- W2112674101 hasConceptScore W2112674101C119857082 @default.
- W2112674101 hasConceptScore W2112674101C120217122 @default.
- W2112674101 hasConceptScore W2112674101C126343540 @default.
- W2112674101 hasConceptScore W2112674101C127413603 @default.
- W2112674101 hasConceptScore W2112674101C142724271 @default.
- W2112674101 hasConceptScore W2112674101C1549246 @default.
- W2112674101 hasConceptScore W2112674101C166957645 @default.
- W2112674101 hasConceptScore W2112674101C205649164 @default.
- W2112674101 hasConceptScore W2112674101C25989453 @default.
- W2112674101 hasConceptScore W2112674101C2776133958 @default.
- W2112674101 hasConceptScore W2112674101C2780376076 @default.
- W2112674101 hasConceptScore W2112674101C39432304 @default.
- W2112674101 hasConceptScore W2112674101C41008148 @default.
- W2112674101 hasConceptScore W2112674101C50644808 @default.
- W2112674101 hasConceptScore W2112674101C62649853 @default.
- W2112674101 hasConceptScore W2112674101C6557445 @default.
- W2112674101 hasConceptScore W2112674101C71924100 @default.
- W2112674101 hasConceptScore W2112674101C78869512 @default.
- W2112674101 hasConceptScore W2112674101C86803240 @default.
- W2112674101 hasConceptScore W2112674101C88463610 @default.
- W2112674101 hasIssue "3" @default.