Matches in SemOpenAlex for { <https://semopenalex.org/work/W2112744712> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2112744712 endingPage "2496" @default.
- W2112744712 startingPage "2469" @default.
- W2112744712 abstract "In the presence of a heavy-tail noise distribution, regression becomes much more difficult. Traditional robust regression methods assume that the noise distribution is symmetric, and they downweight the influence of so-called outliers. When the noise distribution is asymmetric, these methods yield biased regression estimators. Motivated by data-mining problems for the insurance industry, we propose a new approach to robust regression tailored to deal with asymmetric noise distribution. The main idea is to learn most of the parameters of the model using conditional quantile estimators (which are biased but robust estimators of the regression) and to learn a few remaining parameters to combine and correct these estimators, to minimize the average squared error in an unbiased way. Theoretical analysis and experiments show the clear advantages of the approach. Results are on artificial data as well as insurance data, using both linear and neural network predictors." @default.
- W2112744712 created "2016-06-24" @default.
- W2112744712 creator A5028826050 @default.
- W2112744712 creator A5081482638 @default.
- W2112744712 creator A5088569462 @default.
- W2112744712 date "2002-10-01" @default.
- W2112744712 modified "2023-10-03" @default.
- W2112744712 title "Robust Regression with Asymmetric Heavy-Tail Noise Distributions" @default.
- W2112744712 cites W1963944982 @default.
- W2112744712 cites W1978679122 @default.
- W2112744712 cites W2065742895 @default.
- W2112744712 cites W4233594481 @default.
- W2112744712 cites W4241653265 @default.
- W2112744712 cites W4248800565 @default.
- W2112744712 doi "https://doi.org/10.1162/08997660260293300" @default.
- W2112744712 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12396571" @default.
- W2112744712 hasPublicationYear "2002" @default.
- W2112744712 type Work @default.
- W2112744712 sameAs 2112744712 @default.
- W2112744712 citedByCount "15" @default.
- W2112744712 countsByYear W21127447122015 @default.
- W2112744712 countsByYear W21127447122016 @default.
- W2112744712 countsByYear W21127447122018 @default.
- W2112744712 countsByYear W21127447122019 @default.
- W2112744712 countsByYear W21127447122020 @default.
- W2112744712 countsByYear W21127447122022 @default.
- W2112744712 countsByYear W21127447122023 @default.
- W2112744712 crossrefType "journal-article" @default.
- W2112744712 hasAuthorship W2112744712A5028826050 @default.
- W2112744712 hasAuthorship W2112744712A5081482638 @default.
- W2112744712 hasAuthorship W2112744712A5088569462 @default.
- W2112744712 hasBestOaLocation W21127447122 @default.
- W2112744712 hasConcept C105795698 @default.
- W2112744712 hasConcept C115961682 @default.
- W2112744712 hasConcept C118671147 @default.
- W2112744712 hasConcept C152877465 @default.
- W2112744712 hasConcept C154945302 @default.
- W2112744712 hasConcept C185429906 @default.
- W2112744712 hasConcept C33923547 @default.
- W2112744712 hasConcept C41008148 @default.
- W2112744712 hasConcept C48921125 @default.
- W2112744712 hasConcept C50644808 @default.
- W2112744712 hasConcept C63817138 @default.
- W2112744712 hasConcept C70259352 @default.
- W2112744712 hasConcept C79337645 @default.
- W2112744712 hasConcept C83546350 @default.
- W2112744712 hasConcept C99498987 @default.
- W2112744712 hasConceptScore W2112744712C105795698 @default.
- W2112744712 hasConceptScore W2112744712C115961682 @default.
- W2112744712 hasConceptScore W2112744712C118671147 @default.
- W2112744712 hasConceptScore W2112744712C152877465 @default.
- W2112744712 hasConceptScore W2112744712C154945302 @default.
- W2112744712 hasConceptScore W2112744712C185429906 @default.
- W2112744712 hasConceptScore W2112744712C33923547 @default.
- W2112744712 hasConceptScore W2112744712C41008148 @default.
- W2112744712 hasConceptScore W2112744712C48921125 @default.
- W2112744712 hasConceptScore W2112744712C50644808 @default.
- W2112744712 hasConceptScore W2112744712C63817138 @default.
- W2112744712 hasConceptScore W2112744712C70259352 @default.
- W2112744712 hasConceptScore W2112744712C79337645 @default.
- W2112744712 hasConceptScore W2112744712C83546350 @default.
- W2112744712 hasConceptScore W2112744712C99498987 @default.
- W2112744712 hasIssue "10" @default.
- W2112744712 hasLocation W21127447121 @default.
- W2112744712 hasLocation W21127447122 @default.
- W2112744712 hasLocation W21127447123 @default.
- W2112744712 hasOpenAccess W2112744712 @default.
- W2112744712 hasPrimaryLocation W21127447121 @default.
- W2112744712 hasRelatedWork W1571591180 @default.
- W2112744712 hasRelatedWork W2018697919 @default.
- W2112744712 hasRelatedWork W2325374573 @default.
- W2112744712 hasRelatedWork W2592719471 @default.
- W2112744712 hasRelatedWork W2801807510 @default.
- W2112744712 hasRelatedWork W3124352863 @default.
- W2112744712 hasRelatedWork W3125536927 @default.
- W2112744712 hasRelatedWork W3186653746 @default.
- W2112744712 hasRelatedWork W3197495581 @default.
- W2112744712 hasRelatedWork W4249094282 @default.
- W2112744712 hasVolume "14" @default.
- W2112744712 isParatext "false" @default.
- W2112744712 isRetracted "false" @default.
- W2112744712 magId "2112744712" @default.
- W2112744712 workType "article" @default.