Matches in SemOpenAlex for { <https://semopenalex.org/work/W2112749081> ?p ?o ?g. }
- W2112749081 endingPage "299" @default.
- W2112749081 startingPage "281" @default.
- W2112749081 abstract "Abstract The purpose of the present study is to explore the feasibility of estimating and correcting systematic model errors using a simple and efficient procedure, inspired by papers by Leith as well as DelSole and Hou, that could be applied operationally, and to compare the impact of correcting the model integration with statistical corrections performed a posteriori. An elementary data assimilation scheme (Newtonian relaxation) is used to compare two simple but realistic global models, one quasigeostrophic and one based on the primitive equations, to the NCEP reanalysis (approximating the real atmosphere). The 6-h analysis corrections are separated into the model bias (obtained by time averaging the errors over several years), the periodic (seasonal and diurnal) component of the errors, and the nonperiodic errors. An estimate of the systematic component of the nonperiodic errors linearly dependent on the anomalous state is generated. Forecasts corrected during model integration with a seasonally dependent estimate of the bias remain useful longer than forecasts corrected a posteriori. The diurnal correction (based on the leading EOFs of the analysis corrections) is also successful. State-dependent corrections using the full-dimensional Leith scheme and several years of training actually make the forecasts worse due to sampling errors in the estimation of the covariance. A sparse approximation of the Leith covariance is derived using univariate and spatially localized covariances. The sparse Leith covariance results in small regional improvements, but is still computationally prohibitive. Finally, singular value decomposition is used to obtain the coupled components of the correction and forecast anomalies during the training period. The corresponding heterogeneous correlation maps are used to estimate and correct by regression the state-dependent errors during the model integration. Although the global impact of this computationally efficient method is small, it succeeds in reducing state-dependent model systematic errors in regions where they are large. The method requires only a time series of analysis corrections to estimate the error covariance and uses negligible additional computation during a forecast. As a result, it should be suitable for operational use at relatively small computational expense." @default.
- W2112749081 created "2016-06-24" @default.
- W2112749081 creator A5002034958 @default.
- W2112749081 creator A5006955963 @default.
- W2112749081 creator A5062003303 @default.
- W2112749081 date "2007-02-01" @default.
- W2112749081 modified "2023-10-18" @default.
- W2112749081 title "Estimating and Correcting Global Weather Model Error" @default.
- W2112749081 cites W1523222099 @default.
- W2112749081 cites W1967722715 @default.
- W2112749081 cites W1969770933 @default.
- W2112749081 cites W1974433183 @default.
- W2112749081 cites W1981166136 @default.
- W2112749081 cites W1988280894 @default.
- W2112749081 cites W2019279153 @default.
- W2112749081 cites W2026058014 @default.
- W2112749081 cites W2042793394 @default.
- W2112749081 cites W2055465468 @default.
- W2112749081 cites W2059391424 @default.
- W2112749081 cites W2067779084 @default.
- W2112749081 cites W2069557812 @default.
- W2112749081 cites W2083218253 @default.
- W2112749081 cites W2097507139 @default.
- W2112749081 cites W2105189930 @default.
- W2112749081 cites W2112045687 @default.
- W2112749081 cites W2147119488 @default.
- W2112749081 cites W2161358768 @default.
- W2112749081 cites W2162266044 @default.
- W2112749081 cites W2168102396 @default.
- W2112749081 cites W2172718203 @default.
- W2112749081 cites W2172819965 @default.
- W2112749081 cites W2173190456 @default.
- W2112749081 cites W2173845851 @default.
- W2112749081 cites W2175913405 @default.
- W2112749081 cites W2176150232 @default.
- W2112749081 cites W2179584279 @default.
- W2112749081 cites W2179596748 @default.
- W2112749081 cites W333990585 @default.
- W2112749081 cites W4243460624 @default.
- W2112749081 cites W4246131635 @default.
- W2112749081 doi "https://doi.org/10.1175/mwr3289.1" @default.
- W2112749081 hasPublicationYear "2007" @default.
- W2112749081 type Work @default.
- W2112749081 sameAs 2112749081 @default.
- W2112749081 citedByCount "85" @default.
- W2112749081 countsByYear W21127490812012 @default.
- W2112749081 countsByYear W21127490812013 @default.
- W2112749081 countsByYear W21127490812014 @default.
- W2112749081 countsByYear W21127490812015 @default.
- W2112749081 countsByYear W21127490812016 @default.
- W2112749081 countsByYear W21127490812017 @default.
- W2112749081 countsByYear W21127490812018 @default.
- W2112749081 countsByYear W21127490812019 @default.
- W2112749081 countsByYear W21127490812020 @default.
- W2112749081 countsByYear W21127490812021 @default.
- W2112749081 countsByYear W21127490812022 @default.
- W2112749081 countsByYear W21127490812023 @default.
- W2112749081 crossrefType "journal-article" @default.
- W2112749081 hasAuthorship W2112749081A5002034958 @default.
- W2112749081 hasAuthorship W2112749081A5006955963 @default.
- W2112749081 hasAuthorship W2112749081A5062003303 @default.
- W2112749081 hasBestOaLocation W21127490811 @default.
- W2112749081 hasConcept C105795698 @default.
- W2112749081 hasConcept C111472728 @default.
- W2112749081 hasConcept C11413529 @default.
- W2112749081 hasConcept C121332964 @default.
- W2112749081 hasConcept C138885662 @default.
- W2112749081 hasConcept C147947694 @default.
- W2112749081 hasConcept C153294291 @default.
- W2112749081 hasConcept C158622935 @default.
- W2112749081 hasConcept C161584116 @default.
- W2112749081 hasConcept C178650346 @default.
- W2112749081 hasConcept C199163554 @default.
- W2112749081 hasConcept C22789450 @default.
- W2112749081 hasConcept C24552861 @default.
- W2112749081 hasConcept C28826006 @default.
- W2112749081 hasConcept C33923547 @default.
- W2112749081 hasConcept C41008148 @default.
- W2112749081 hasConcept C62520636 @default.
- W2112749081 hasConcept C75553542 @default.
- W2112749081 hasConceptScore W2112749081C105795698 @default.
- W2112749081 hasConceptScore W2112749081C111472728 @default.
- W2112749081 hasConceptScore W2112749081C11413529 @default.
- W2112749081 hasConceptScore W2112749081C121332964 @default.
- W2112749081 hasConceptScore W2112749081C138885662 @default.
- W2112749081 hasConceptScore W2112749081C147947694 @default.
- W2112749081 hasConceptScore W2112749081C153294291 @default.
- W2112749081 hasConceptScore W2112749081C158622935 @default.
- W2112749081 hasConceptScore W2112749081C161584116 @default.
- W2112749081 hasConceptScore W2112749081C178650346 @default.
- W2112749081 hasConceptScore W2112749081C199163554 @default.
- W2112749081 hasConceptScore W2112749081C22789450 @default.
- W2112749081 hasConceptScore W2112749081C24552861 @default.
- W2112749081 hasConceptScore W2112749081C28826006 @default.
- W2112749081 hasConceptScore W2112749081C33923547 @default.
- W2112749081 hasConceptScore W2112749081C41008148 @default.
- W2112749081 hasConceptScore W2112749081C62520636 @default.
- W2112749081 hasConceptScore W2112749081C75553542 @default.