Matches in SemOpenAlex for { <https://semopenalex.org/work/W2112847482> ?p ?o ?g. }
- W2112847482 endingPage "701" @default.
- W2112847482 startingPage "688" @default.
- W2112847482 abstract "Planktonic nitrogen fixation in lakes is strongly related to lake trophic status, with moderate and high rates usually occurring only in eutrophic lakes. Among eutrophic lakes, nitrogen fixation is related to the ratio of nitrogen loading to phosphorus loading to the lake; significant nitrogen fixation by planktonic organisms generally occurs only when the N: P ratio of the nutrient loading is near or below the Redfield ratio of 16: 1. In contrast, nitrogen fixation by planktonic organisms is generally low in estuaries even when the N: P ratio of nutrients inputs is low. The tendency toward less nitrogen fixation by plankton in estuaries and coastal marine ecosystems than in lakes subject to similar loadings of nitrogen and phosphorus may be due to a lower availability in oxic seawater of one or more trace elements required for nitrogen fixation, such as molybdenum and iron. Iron concentrations are generally lower in estuarine waters and seawater than in most lakes. And although molybdenum concentrations in seawater are actually higher than in lakes, molybdenum availability is probably lower, since sulfate inhibits molybdate assimilation by microbes. Molybdate is the primary form of molybdenum in oxic seawater, and the ratio of sulfate: molybdate is greater than in lakes. However, even in lakes sulfate is several orders of magnitude more abundant than molybdenum, and the ratio of dissolved sulfate to dissolved molybdenum typically is much greater than the ratio of sulfur to molybdenum apparently required by nitrogen-fixing cyanobacteria. Consequently, assimilation of molybdate by cyanobacteria is probably an energetically expensive process in all natural waters, but more so in seawater than in freshwaters. High concentrations of dissolved organic matter are known to favor blooms of cyanobacteria, perhaps by increasing iron and/or molybdenum availability through chelation. The primary controls on nitrogen fixation in sediments, wetlands, macrophyte beds, and cyanobacterial mats may be different from those for fixation by planktonic organisms. Both molybdenum and iron are probably more available in these systems than in oxic waters, since reducing conditions and high DOC concentrations will increase iron solubility and favor the stability of reduced forms of molybdenum; sulfate should not inhibit the assimilation of these reduced molybdenum compounds. Consequently, nitrogenase synthesis (and, therefore, nitrogen fixation) in wetlands and in sediments may be less energetically expensive than in oxic water columns. A major control on nitrogen fixation in sediments may be repression of nitrogenase synthesis by high concentrations of ammonium, a factor less important to planktonic fixation because of the much lower concentrations of ammonium generally found in water columns than in sediments." @default.
- W2112847482 created "2016-06-24" @default.
- W2112847482 creator A5025013215 @default.
- W2112847482 creator A5034220151 @default.
- W2112847482 creator A5079580464 @default.
- W2112847482 date "1988-07-01" @default.
- W2112847482 modified "2023-10-11" @default.
- W2112847482 title "Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 2. Biogeochemical controls1" @default.
- W2112847482 cites W1498087204 @default.
- W2112847482 cites W1573742738 @default.
- W2112847482 cites W1965599138 @default.
- W2112847482 cites W1978299660 @default.
- W2112847482 cites W1980872305 @default.
- W2112847482 cites W1981712879 @default.
- W2112847482 cites W1984785675 @default.
- W2112847482 cites W1987099641 @default.
- W2112847482 cites W1987278579 @default.
- W2112847482 cites W1990931504 @default.
- W2112847482 cites W1991580707 @default.
- W2112847482 cites W1992162217 @default.
- W2112847482 cites W1993443106 @default.
- W2112847482 cites W1996007178 @default.
- W2112847482 cites W1997293078 @default.
- W2112847482 cites W1998592679 @default.
- W2112847482 cites W1999997953 @default.
- W2112847482 cites W2002865425 @default.
- W2112847482 cites W2018114143 @default.
- W2112847482 cites W2024455262 @default.
- W2112847482 cites W2033076824 @default.
- W2112847482 cites W2033653245 @default.
- W2112847482 cites W2036197570 @default.
- W2112847482 cites W2041751879 @default.
- W2112847482 cites W2042910564 @default.
- W2112847482 cites W2048028408 @default.
- W2112847482 cites W2059893044 @default.
- W2112847482 cites W2066579884 @default.
- W2112847482 cites W2072285457 @default.
- W2112847482 cites W2073070845 @default.
- W2112847482 cites W2074528701 @default.
- W2112847482 cites W2077694905 @default.
- W2112847482 cites W2082981352 @default.
- W2112847482 cites W2085952089 @default.
- W2112847482 cites W2090751775 @default.
- W2112847482 cites W2105514750 @default.
- W2112847482 cites W2106663338 @default.
- W2112847482 cites W2119526669 @default.
- W2112847482 cites W2130472712 @default.
- W2112847482 cites W2133794338 @default.
- W2112847482 cites W2134174352 @default.
- W2112847482 cites W2174615974 @default.
- W2112847482 cites W21921259 @default.
- W2112847482 cites W24262043 @default.
- W2112847482 cites W2527591550 @default.
- W2112847482 cites W2542041689 @default.
- W2112847482 doi "https://doi.org/10.4319/lo.1988.33.4part2.0688" @default.
- W2112847482 hasPublicationYear "1988" @default.
- W2112847482 type Work @default.
- W2112847482 sameAs 2112847482 @default.
- W2112847482 citedByCount "126" @default.
- W2112847482 countsByYear W21128474822012 @default.
- W2112847482 countsByYear W21128474822013 @default.
- W2112847482 countsByYear W21128474822014 @default.
- W2112847482 countsByYear W21128474822015 @default.
- W2112847482 countsByYear W21128474822016 @default.
- W2112847482 countsByYear W21128474822017 @default.
- W2112847482 countsByYear W21128474822018 @default.
- W2112847482 countsByYear W21128474822019 @default.
- W2112847482 countsByYear W21128474822020 @default.
- W2112847482 countsByYear W21128474822021 @default.
- W2112847482 countsByYear W21128474822022 @default.
- W2112847482 crossrefType "journal-article" @default.
- W2112847482 hasAuthorship W2112847482A5025013215 @default.
- W2112847482 hasAuthorship W2112847482A5034220151 @default.
- W2112847482 hasAuthorship W2112847482A5079580464 @default.
- W2112847482 hasBestOaLocation W21128474821 @default.
- W2112847482 hasConcept C107872376 @default.
- W2112847482 hasConcept C108469399 @default.
- W2112847482 hasConcept C142796444 @default.
- W2112847482 hasConcept C178790620 @default.
- W2112847482 hasConcept C181440489 @default.
- W2112847482 hasConcept C185592680 @default.
- W2112847482 hasConcept C186699998 @default.
- W2112847482 hasConcept C18903297 @default.
- W2112847482 hasConcept C197248824 @default.
- W2112847482 hasConcept C2778343803 @default.
- W2112847482 hasConcept C2780892065 @default.
- W2112847482 hasConcept C39432304 @default.
- W2112847482 hasConcept C537208039 @default.
- W2112847482 hasConcept C71915725 @default.
- W2112847482 hasConcept C83139838 @default.
- W2112847482 hasConcept C86803240 @default.
- W2112847482 hasConcept C88160329 @default.
- W2112847482 hasConceptScore W2112847482C107872376 @default.
- W2112847482 hasConceptScore W2112847482C108469399 @default.
- W2112847482 hasConceptScore W2112847482C142796444 @default.
- W2112847482 hasConceptScore W2112847482C178790620 @default.
- W2112847482 hasConceptScore W2112847482C181440489 @default.
- W2112847482 hasConceptScore W2112847482C185592680 @default.