Matches in SemOpenAlex for { <https://semopenalex.org/work/W2112853915> ?p ?o ?g. }
- W2112853915 endingPage "203" @default.
- W2112853915 startingPage "193" @default.
- W2112853915 abstract "The physical and electronic structure of the (1 0 0), (0 1 0), (0 0 1) and (101¯) faces of β-Ga2O3 are addressed using ab initio theory. Restricted Hartree–Fock calculations, with large-core Ga and O pseudopotentials, are done to optimize the structure of first the bulk and then of slabs “cut” in the required orientations. The slab unit cells are fully relaxed during optimization, and the displacements of all atoms from the ideally-terminated positions are obtained as functions of depth into the bulk. For the relaxed slabs, single-point density functional theory calculations using the B3LYP functional and all-electron basis sets are performed to obtain surface energies, ionic charges and bond overlap populations. All surfaces exhibit a decrease in surface energy upon relaxation, and the local bonding at the surface is analyzed by comparing nearest-neighbor bond lengths and overlap populations with those in the bulk. The (101¯) surface, which exhibits a high energy when ideally terminated, undergoes large displacements and changes in bonding during relaxation leading to a substantial lowering of the surface energy. The band structure is also obtained for the lowest-energy surface, which is one of the possible non-polar terminations of the (1 0 0). The results provide insight into the growth and structure of β-Ga2O3 nanoribbons." @default.
- W2112853915 created "2016-06-24" @default.
- W2112853915 creator A5084431581 @default.
- W2112853915 date "2006-04-01" @default.
- W2112853915 modified "2023-10-01" @default.
- W2112853915 title "The structure of low-index surfaces of β-Ga2O3" @default.
- W2112853915 cites W1489437210 @default.
- W2112853915 cites W1492977420 @default.
- W2112853915 cites W1499766313 @default.
- W2112853915 cites W1545629615 @default.
- W2112853915 cites W1578830585 @default.
- W2112853915 cites W1647941555 @default.
- W2112853915 cites W1968595274 @default.
- W2112853915 cites W1974482139 @default.
- W2112853915 cites W1978191652 @default.
- W2112853915 cites W1983060988 @default.
- W2112853915 cites W1985154615 @default.
- W2112853915 cites W1986735981 @default.
- W2112853915 cites W1986771336 @default.
- W2112853915 cites W1986830809 @default.
- W2112853915 cites W1987314376 @default.
- W2112853915 cites W1988564875 @default.
- W2112853915 cites W1993581634 @default.
- W2112853915 cites W1997235780 @default.
- W2112853915 cites W2002223151 @default.
- W2112853915 cites W2008645716 @default.
- W2112853915 cites W2011895962 @default.
- W2112853915 cites W2014372435 @default.
- W2112853915 cites W2014411541 @default.
- W2112853915 cites W2018653875 @default.
- W2112853915 cites W2036708467 @default.
- W2112853915 cites W2036926759 @default.
- W2112853915 cites W2038290095 @default.
- W2112853915 cites W2040046021 @default.
- W2112853915 cites W2043621664 @default.
- W2112853915 cites W2044377101 @default.
- W2112853915 cites W2047097389 @default.
- W2112853915 cites W2050048753 @default.
- W2112853915 cites W2050344902 @default.
- W2112853915 cites W2054699298 @default.
- W2112853915 cites W2055105240 @default.
- W2112853915 cites W2056223859 @default.
- W2112853915 cites W2065342701 @default.
- W2112853915 cites W2069367491 @default.
- W2112853915 cites W2071319393 @default.
- W2112853915 cites W2080940452 @default.
- W2112853915 cites W2081312160 @default.
- W2112853915 cites W2089306794 @default.
- W2112853915 cites W2094582863 @default.
- W2112853915 cites W2105435168 @default.
- W2112853915 cites W2117246103 @default.
- W2112853915 cites W2119825041 @default.
- W2112853915 cites W2137487829 @default.
- W2112853915 cites W2317465745 @default.
- W2112853915 cites W2508239461 @default.
- W2112853915 cites W2623729177 @default.
- W2112853915 cites W3103250498 @default.
- W2112853915 doi "https://doi.org/10.1016/j.chemphys.2005.08.051" @default.
- W2112853915 hasPublicationYear "2006" @default.
- W2112853915 type Work @default.
- W2112853915 sameAs 2112853915 @default.
- W2112853915 citedByCount "142" @default.
- W2112853915 countsByYear W21128539152012 @default.
- W2112853915 countsByYear W21128539152013 @default.
- W2112853915 countsByYear W21128539152014 @default.
- W2112853915 countsByYear W21128539152015 @default.
- W2112853915 countsByYear W21128539152016 @default.
- W2112853915 countsByYear W21128539152017 @default.
- W2112853915 countsByYear W21128539152018 @default.
- W2112853915 countsByYear W21128539152019 @default.
- W2112853915 countsByYear W21128539152020 @default.
- W2112853915 countsByYear W21128539152021 @default.
- W2112853915 countsByYear W21128539152022 @default.
- W2112853915 countsByYear W21128539152023 @default.
- W2112853915 crossrefType "journal-article" @default.
- W2112853915 hasAuthorship W2112853915A5084431581 @default.
- W2112853915 hasConcept C113740112 @default.
- W2112853915 hasConcept C115624301 @default.
- W2112853915 hasConcept C121332964 @default.
- W2112853915 hasConcept C125469278 @default.
- W2112853915 hasConcept C145148216 @default.
- W2112853915 hasConcept C147597530 @default.
- W2112853915 hasConcept C152365726 @default.
- W2112853915 hasConcept C155860418 @default.
- W2112853915 hasConcept C15744967 @default.
- W2112853915 hasConcept C159467904 @default.
- W2112853915 hasConcept C178790620 @default.
- W2112853915 hasConcept C181966813 @default.
- W2112853915 hasConcept C183971685 @default.
- W2112853915 hasConcept C185592680 @default.
- W2112853915 hasConcept C2182769 @default.
- W2112853915 hasConcept C2524010 @default.
- W2112853915 hasConcept C26873012 @default.
- W2112853915 hasConcept C2776029896 @default.
- W2112853915 hasConcept C2776799497 @default.
- W2112853915 hasConcept C2781442258 @default.
- W2112853915 hasConcept C32909587 @default.
- W2112853915 hasConcept C33923547 @default.