Matches in SemOpenAlex for { <https://semopenalex.org/work/W2112952709> ?p ?o ?g. }
- W2112952709 endingPage "4134" @default.
- W2112952709 startingPage "4116" @default.
- W2112952709 abstract "Longitudinal data are often segmented by unobserved time-varying factors, which introduce latent heterogeneity at the observation level, in addition to heterogeneity across subjects. We account for this latent structure by a linear mixed hidden Markov model. It integrates subject-specific random effects and Markovian sequences of time-varying effects in the linear predictor. We propose an expectationŰ-maximization algorithm for maximum likelihood estimation, based on data augmentation. It reduces to the iterative maximization of the expected value of a complete likelihood function, derived from an augmented dataset with case weights, alternated with weights updating. In a case study of the Survey on Stress Aging and Health in Russia, the model is exploited to estimate the influence of the observed covariates under unobserved time-varying factors, which affect the cardiovascular activity of each subject during the observation period. Copyright © 2014 John Wiley & Sons, Ltd." @default.
- W2112952709 created "2016-06-24" @default.
- W2112952709 creator A5024611156 @default.
- W2112952709 creator A5042519142 @default.
- W2112952709 creator A5062774594 @default.
- W2112952709 date "2014-06-02" @default.
- W2112952709 modified "2023-10-17" @default.
- W2112952709 title "Latent time-varying factors in longitudinal analysis: a linear mixed hidden Markov model for heart rates" @default.
- W2112952709 cites W1499805410 @default.
- W2112952709 cites W1558307516 @default.
- W2112952709 cites W160896187 @default.
- W2112952709 cites W1947560069 @default.
- W2112952709 cites W1966129222 @default.
- W2112952709 cites W1967304290 @default.
- W2112952709 cites W1988996445 @default.
- W2112952709 cites W1992889332 @default.
- W2112952709 cites W1993149050 @default.
- W2112952709 cites W1996525588 @default.
- W2112952709 cites W2003144493 @default.
- W2112952709 cites W2004952232 @default.
- W2112952709 cites W2025229611 @default.
- W2112952709 cites W2048558590 @default.
- W2112952709 cites W2053742104 @default.
- W2112952709 cites W2073160795 @default.
- W2112952709 cites W2074014538 @default.
- W2112952709 cites W2076322998 @default.
- W2112952709 cites W2093895222 @default.
- W2112952709 cites W2102423296 @default.
- W2112952709 cites W2107165713 @default.
- W2112952709 cites W2109820980 @default.
- W2112952709 cites W2122014842 @default.
- W2112952709 cites W2124482801 @default.
- W2112952709 cites W2126384545 @default.
- W2112952709 cites W2133589238 @default.
- W2112952709 cites W2133660688 @default.
- W2112952709 cites W2156944210 @default.
- W2112952709 cites W2163092745 @default.
- W2112952709 cites W2488678869 @default.
- W2112952709 cites W3103613820 @default.
- W2112952709 cites W4238251256 @default.
- W2112952709 cites W4240912299 @default.
- W2112952709 cites W4250389103 @default.
- W2112952709 doi "https://doi.org/10.1002/sim.6220" @default.
- W2112952709 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4159441" @default.
- W2112952709 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24889355" @default.
- W2112952709 hasPublicationYear "2014" @default.
- W2112952709 type Work @default.
- W2112952709 sameAs 2112952709 @default.
- W2112952709 citedByCount "15" @default.
- W2112952709 countsByYear W21129527092015 @default.
- W2112952709 countsByYear W21129527092016 @default.
- W2112952709 countsByYear W21129527092017 @default.
- W2112952709 countsByYear W21129527092018 @default.
- W2112952709 countsByYear W21129527092019 @default.
- W2112952709 countsByYear W21129527092020 @default.
- W2112952709 countsByYear W21129527092021 @default.
- W2112952709 countsByYear W21129527092023 @default.
- W2112952709 crossrefType "journal-article" @default.
- W2112952709 hasAuthorship W2112952709A5024611156 @default.
- W2112952709 hasAuthorship W2112952709A5042519142 @default.
- W2112952709 hasAuthorship W2112952709A5062774594 @default.
- W2112952709 hasBestOaLocation W21129527092 @default.
- W2112952709 hasConcept C105795698 @default.
- W2112952709 hasConcept C119043178 @default.
- W2112952709 hasConcept C126255220 @default.
- W2112952709 hasConcept C126322002 @default.
- W2112952709 hasConcept C149782125 @default.
- W2112952709 hasConcept C154945302 @default.
- W2112952709 hasConcept C163836022 @default.
- W2112952709 hasConcept C168743327 @default.
- W2112952709 hasConcept C182081679 @default.
- W2112952709 hasConcept C23224414 @default.
- W2112952709 hasConcept C2776330181 @default.
- W2112952709 hasConcept C33923547 @default.
- W2112952709 hasConcept C41008148 @default.
- W2112952709 hasConcept C49781872 @default.
- W2112952709 hasConcept C71924100 @default.
- W2112952709 hasConcept C89106044 @default.
- W2112952709 hasConcept C95190672 @default.
- W2112952709 hasConcept C98763669 @default.
- W2112952709 hasConceptScore W2112952709C105795698 @default.
- W2112952709 hasConceptScore W2112952709C119043178 @default.
- W2112952709 hasConceptScore W2112952709C126255220 @default.
- W2112952709 hasConceptScore W2112952709C126322002 @default.
- W2112952709 hasConceptScore W2112952709C149782125 @default.
- W2112952709 hasConceptScore W2112952709C154945302 @default.
- W2112952709 hasConceptScore W2112952709C163836022 @default.
- W2112952709 hasConceptScore W2112952709C168743327 @default.
- W2112952709 hasConceptScore W2112952709C182081679 @default.
- W2112952709 hasConceptScore W2112952709C23224414 @default.
- W2112952709 hasConceptScore W2112952709C2776330181 @default.
- W2112952709 hasConceptScore W2112952709C33923547 @default.
- W2112952709 hasConceptScore W2112952709C41008148 @default.
- W2112952709 hasConceptScore W2112952709C49781872 @default.
- W2112952709 hasConceptScore W2112952709C71924100 @default.
- W2112952709 hasConceptScore W2112952709C89106044 @default.
- W2112952709 hasConceptScore W2112952709C95190672 @default.
- W2112952709 hasConceptScore W2112952709C98763669 @default.