Matches in SemOpenAlex for { <https://semopenalex.org/work/W2113041803> ?p ?o ?g. }
- W2113041803 abstract "Inflammation is a hallmark of many human diseases. Elucidating the mechanisms underlying systemic inflammation has long been an important topic in basic and clinical research. When primary pathogenetic events remains unclear due to its immense complexity, construction and analysis of the gene regulatory network of inflammation at times becomes the best way to understand the detrimental effects of disease. However, it is difficult to recognize and evaluate relevant biological processes from the huge quantities of experimental data. It is hence appealing to find an algorithm which can generate a gene regulatory network of systemic inflammation from high-throughput genomic studies of human diseases. Such network will be essential for us to extract valuable information from the complex and chaotic network under diseased conditions. In this study, we construct a gene regulatory network of inflammation using data extracted from the Ensembl and JASPAR databases. We also integrate and apply a number of systematic algorithms like cross correlation threshold, maximum likelihood estimation method and Akaike Information Criterion (AIC) on time-lapsed microarray data to refine the genome-wide transcriptional regulatory network in response to bacterial endotoxins in the context of dynamic activated genes, which are regulated by transcription factors (TFs) such as NF-κB. This systematic approach is used to investigate the stochastic interaction represented by the dynamic leukocyte gene expression profiles of human subject exposed to an inflammatory stimulus (bacterial endotoxin). Based on the kinetic parameters of the dynamic gene regulatory network, we identify important properties (such as susceptibility to infection) of the immune system, which may be useful for translational research. Finally, robustness of the inflammatory gene network is also inferred by analyzing the hubs and weak ties structures of the gene network. In this study, Data mining and dynamic network analyses were integrated to examine the gene regulatory network in the inflammatory response system. Compared with previous methodologies reported in the literatures, the proposed gene network perturbation method has shown a great improvement in analyzing the systemic inflammation." @default.
- W2113041803 created "2016-06-24" @default.
- W2113041803 creator A5000109074 @default.
- W2113041803 creator A5038219293 @default.
- W2113041803 creator A5064215809 @default.
- W2113041803 date "2008-09-30" @default.
- W2113041803 modified "2023-09-23" @default.
- W2113041803 title "A systems biology approach to construct the gene regulatory network of systemic inflammation via microarray and databases mining" @default.
- W2113041803 cites W1521338784 @default.
- W2113041803 cites W1902994327 @default.
- W2113041803 cites W1965037168 @default.
- W2113041803 cites W1970569661 @default.
- W2113041803 cites W1972764318 @default.
- W2113041803 cites W1975351609 @default.
- W2113041803 cites W1978057977 @default.
- W2113041803 cites W1978486653 @default.
- W2113041803 cites W1989921625 @default.
- W2113041803 cites W2006787505 @default.
- W2113041803 cites W2024571181 @default.
- W2113041803 cites W2026663926 @default.
- W2113041803 cites W2037530594 @default.
- W2113041803 cites W2053126761 @default.
- W2113041803 cites W2074097004 @default.
- W2113041803 cites W2079168625 @default.
- W2113041803 cites W2083247404 @default.
- W2113041803 cites W2092091227 @default.
- W2113041803 cites W2094193282 @default.
- W2113041803 cites W2106742626 @default.
- W2113041803 cites W2106877484 @default.
- W2113041803 cites W2130494787 @default.
- W2113041803 cites W2135852310 @default.
- W2113041803 cites W2136988691 @default.
- W2113041803 cites W2137082708 @default.
- W2113041803 cites W2139683115 @default.
- W2113041803 cites W2143784594 @default.
- W2113041803 cites W2145889895 @default.
- W2113041803 cites W2148119611 @default.
- W2113041803 cites W2149755691 @default.
- W2113041803 cites W2154475586 @default.
- W2113041803 cites W2166781237 @default.
- W2113041803 cites W2169903799 @default.
- W2113041803 cites W2171580484 @default.
- W2113041803 cites W2999065750 @default.
- W2113041803 cites W4211017114 @default.
- W2113041803 cites W4238726034 @default.
- W2113041803 cites W4379365691 @default.
- W2113041803 cites W99374810 @default.
- W2113041803 doi "https://doi.org/10.1186/1755-8794-1-46" @default.
- W2113041803 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2567339" @default.
- W2113041803 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18823570" @default.
- W2113041803 hasPublicationYear "2008" @default.
- W2113041803 type Work @default.
- W2113041803 sameAs 2113041803 @default.
- W2113041803 citedByCount "49" @default.
- W2113041803 countsByYear W21130418032012 @default.
- W2113041803 countsByYear W21130418032013 @default.
- W2113041803 countsByYear W21130418032014 @default.
- W2113041803 countsByYear W21130418032015 @default.
- W2113041803 countsByYear W21130418032016 @default.
- W2113041803 countsByYear W21130418032017 @default.
- W2113041803 countsByYear W21130418032018 @default.
- W2113041803 countsByYear W21130418032019 @default.
- W2113041803 countsByYear W21130418032020 @default.
- W2113041803 countsByYear W21130418032021 @default.
- W2113041803 countsByYear W21130418032022 @default.
- W2113041803 crossrefType "journal-article" @default.
- W2113041803 hasAuthorship W2113041803A5000109074 @default.
- W2113041803 hasAuthorship W2113041803A5038219293 @default.
- W2113041803 hasAuthorship W2113041803A5064215809 @default.
- W2113041803 hasBestOaLocation W21130418031 @default.
- W2113041803 hasConcept C104317684 @default.
- W2113041803 hasConcept C141231307 @default.
- W2113041803 hasConcept C141674004 @default.
- W2113041803 hasConcept C150194340 @default.
- W2113041803 hasConcept C152662350 @default.
- W2113041803 hasConcept C189206191 @default.
- W2113041803 hasConcept C203014093 @default.
- W2113041803 hasConcept C2776252253 @default.
- W2113041803 hasConcept C2776914184 @default.
- W2113041803 hasConcept C28225019 @default.
- W2113041803 hasConcept C47042493 @default.
- W2113041803 hasConcept C54355233 @default.
- W2113041803 hasConcept C60644358 @default.
- W2113041803 hasConcept C67339327 @default.
- W2113041803 hasConcept C70721500 @default.
- W2113041803 hasConcept C8415881 @default.
- W2113041803 hasConcept C86803240 @default.
- W2113041803 hasConcept C95371953 @default.
- W2113041803 hasConceptScore W2113041803C104317684 @default.
- W2113041803 hasConceptScore W2113041803C141231307 @default.
- W2113041803 hasConceptScore W2113041803C141674004 @default.
- W2113041803 hasConceptScore W2113041803C150194340 @default.
- W2113041803 hasConceptScore W2113041803C152662350 @default.
- W2113041803 hasConceptScore W2113041803C189206191 @default.
- W2113041803 hasConceptScore W2113041803C203014093 @default.
- W2113041803 hasConceptScore W2113041803C2776252253 @default.
- W2113041803 hasConceptScore W2113041803C2776914184 @default.
- W2113041803 hasConceptScore W2113041803C28225019 @default.
- W2113041803 hasConceptScore W2113041803C47042493 @default.
- W2113041803 hasConceptScore W2113041803C54355233 @default.