Matches in SemOpenAlex for { <https://semopenalex.org/work/W2113070569> ?p ?o ?g. }
- W2113070569 endingPage "1117" @default.
- W2113070569 startingPage "1095" @default.
- W2113070569 abstract "Peridotites that sample Archean mantle roots are frequently in- INTRODUCTION compatible trace element enriched despite their refractory major The mantle underlying many Archean cratons has anelement compositions. To constrain the trace element budget of the omalously high seismic velocities to depths of 350–400 km lithosphere beneath the Canadian craton, trace element and rare ( Jordan, 1988; Grand, 1994), indicating the presence of earth element (REE) abundances were determined for a suite of cold refractory roots, depleted in the fusible major elegarnet peridotites and garnet pyroxenites from the Nikos kimberlite ments compared with fertile mantle (Boyd & Mertzman, pipe on Somerset Island, Canadian Arctic, their constituent garnet 1987; McDonough, 1990). These deep residual peridotite and clinopyroxene, and the host kimberlite. These refractory mantle roots probably contribute to the stability of Archean xenoliths are depleted in fusible major elements, but enriched in continental lithosphere because of their lower density and incompatible trace elements, such as large ion lithophile elements higher viscosity compared with that of the surrounding (LILE), Th, U and light rare earth elements (LREE). Mass asthenospheric mantle (Boyd & McCallister, 1976; Jorbalance calculations based on modal abundances of clinopyroxene dan, 1979; Pollack, 1986). Mantle xenoliths that are and garnet and their respective REE contents yield discrepancies hosted by kimberlites and alkaline basalts are our only between calculated and analyzed REE contents for the Nikos bulk window into the subcontinental lithosphere. They provide rocks that amount to LREE deficiencies of 70‐99%, suggesting essential evidence on the chemical composition and evoluthe presence of small amounts of interstitial kimberlite liquid tion of the upper mantle to depths of >200 km. Studies (0·4‐2 wt %) to account for the excess LREE abundances. These of these mantle xenoliths enable us to characterize the results indicate that the peridotites had in fact depleted or flat abundance and distribution of major, minor and trace LREE patterns before contamination by their host kimberlite. LREE elements in peridotites and between their constituent and Sr enrichment in clinopyroxene and low Zr and Sr abundances minerals. Most subcratonic peridotite samples have in garnet in low-temperature peridotites (800‐1100°C) compared undergone a complex history of melt extraction that has with high-temperature peridotites (1200‐1400°C) suggest that the changed their chemical composition and resulted in shallow lithosphere is geochemically distinct from the deep lithosphere depletion of the residual mantle in fusible major elements beneath the northern margin of the Canadian craton. The Somerset such as Fe, Al and Ca (e.g. Nixon, 1987; Herzberg, 1993; mantle root appears to be characterized by a depth zonation that Boyd et al., 1997). In contrast to their depletion in may date from the time of its stabilization in the Archean. incompatible major elements, however, many peridotite" @default.
- W2113070569 created "2016-06-24" @default.
- W2113070569 creator A5009810020 @default.
- W2113070569 creator A5038662352 @default.
- W2113070569 date "2001-06-01" @default.
- W2113070569 modified "2023-09-27" @default.
- W2113070569 title "Constraints on the Trace Element Composition of the Archean Mantle Root beneath Somerset Island, Arctic Canada" @default.
- W2113070569 cites W125116308 @default.
- W2113070569 cites W1492773086 @default.
- W2113070569 cites W1505697822 @default.
- W2113070569 cites W1968094740 @default.
- W2113070569 cites W1969859799 @default.
- W2113070569 cites W1980220587 @default.
- W2113070569 cites W1988024307 @default.
- W2113070569 cites W1988184583 @default.
- W2113070569 cites W1996063806 @default.
- W2113070569 cites W1997033901 @default.
- W2113070569 cites W1997875863 @default.
- W2113070569 cites W2000168556 @default.
- W2113070569 cites W2000505371 @default.
- W2113070569 cites W2002041994 @default.
- W2113070569 cites W2003081112 @default.
- W2113070569 cites W2003680751 @default.
- W2113070569 cites W2010312211 @default.
- W2113070569 cites W2010963002 @default.
- W2113070569 cites W2014828526 @default.
- W2113070569 cites W2017941972 @default.
- W2113070569 cites W2021717734 @default.
- W2113070569 cites W2025671512 @default.
- W2113070569 cites W2030111153 @default.
- W2113070569 cites W2032316321 @default.
- W2113070569 cites W2032840455 @default.
- W2113070569 cites W2041911594 @default.
- W2113070569 cites W2044990638 @default.
- W2113070569 cites W2048689831 @default.
- W2113070569 cites W2051089933 @default.
- W2113070569 cites W2052473341 @default.
- W2113070569 cites W2056207362 @default.
- W2113070569 cites W2058000599 @default.
- W2113070569 cites W2062975870 @default.
- W2113070569 cites W2063196188 @default.
- W2113070569 cites W2074921341 @default.
- W2113070569 cites W2075209961 @default.
- W2113070569 cites W2075456173 @default.
- W2113070569 cites W2077698686 @default.
- W2113070569 cites W2079452226 @default.
- W2113070569 cites W2109670845 @default.
- W2113070569 cites W2125478780 @default.
- W2113070569 cites W2138522501 @default.
- W2113070569 cites W2139696801 @default.
- W2113070569 cites W2141443242 @default.
- W2113070569 cites W2146073301 @default.
- W2113070569 cites W2579656065 @default.
- W2113070569 cites W2909569429 @default.
- W2113070569 cites W2910421701 @default.
- W2113070569 cites W4232823865 @default.
- W2113070569 cites W598528115 @default.
- W2113070569 doi "https://doi.org/10.1093/petrology/42.6.1095" @default.
- W2113070569 hasPublicationYear "2001" @default.
- W2113070569 type Work @default.
- W2113070569 sameAs 2113070569 @default.
- W2113070569 citedByCount "71" @default.
- W2113070569 countsByYear W21130705692012 @default.
- W2113070569 countsByYear W21130705692013 @default.
- W2113070569 countsByYear W21130705692014 @default.
- W2113070569 countsByYear W21130705692015 @default.
- W2113070569 countsByYear W21130705692017 @default.
- W2113070569 countsByYear W21130705692018 @default.
- W2113070569 countsByYear W21130705692020 @default.
- W2113070569 countsByYear W21130705692021 @default.
- W2113070569 countsByYear W21130705692022 @default.
- W2113070569 countsByYear W21130705692023 @default.
- W2113070569 crossrefType "journal-article" @default.
- W2113070569 hasAuthorship W2113070569A5009810020 @default.
- W2113070569 hasAuthorship W2113070569A5038662352 @default.
- W2113070569 hasBestOaLocation W21130705691 @default.
- W2113070569 hasConcept C111368507 @default.
- W2113070569 hasConcept C127313418 @default.
- W2113070569 hasConcept C149347711 @default.
- W2113070569 hasConcept C17409809 @default.
- W2113070569 hasConcept C1965285 @default.
- W2113070569 hasConcept C34682378 @default.
- W2113070569 hasConcept C518008717 @default.
- W2113070569 hasConcept C67236022 @default.
- W2113070569 hasConceptScore W2113070569C111368507 @default.
- W2113070569 hasConceptScore W2113070569C127313418 @default.
- W2113070569 hasConceptScore W2113070569C149347711 @default.
- W2113070569 hasConceptScore W2113070569C17409809 @default.
- W2113070569 hasConceptScore W2113070569C1965285 @default.
- W2113070569 hasConceptScore W2113070569C34682378 @default.
- W2113070569 hasConceptScore W2113070569C518008717 @default.
- W2113070569 hasConceptScore W2113070569C67236022 @default.
- W2113070569 hasIssue "6" @default.
- W2113070569 hasLocation W21130705691 @default.
- W2113070569 hasOpenAccess W2113070569 @default.
- W2113070569 hasPrimaryLocation W21130705691 @default.
- W2113070569 hasRelatedWork W1977392925 @default.
- W2113070569 hasRelatedWork W1984901263 @default.