Matches in SemOpenAlex for { <https://semopenalex.org/work/W2113103640> ?p ?o ?g. }
- W2113103640 endingPage "617" @default.
- W2113103640 startingPage "600" @default.
- W2113103640 abstract "In linear regression with functional predictors and scalar responses, it may be advantageous, particularly if the function is thought to contain features at many scales, to restrict the coefficient function to the span of a wavelet basis, thereby converting the problem into one of variable selection. If the coefficient function is sparsely represented in the wavelet domain, we may employ the well-known LASSO to select a relatively small number of nonzero wavelet coefficients. This is a natural approach to take but to date, the properties of such an estimator have not been studied. In this article we describe the wavelet-based LASSO approach to regressing scalars on functions and investigate both its asymptotic convergence and its finite-sample performance through both simulation and real-data application. We compare the performance of this approach with existing methods and find that the wavelet-based LASSO performs relatively well, particularly when the true coefficient function is spiky. Source code to implement the method and datasets used in the study are provided as supplementary materials available online." @default.
- W2113103640 created "2016-06-24" @default.
- W2113103640 creator A5024534947 @default.
- W2113103640 creator A5081965846 @default.
- W2113103640 creator A5090191588 @default.
- W2113103640 date "2012-07-01" @default.
- W2113103640 modified "2023-09-30" @default.
- W2113103640 title "Wavelet-Based LASSO in Functional Linear Regression" @default.
- W2113103640 cites W1964843669 @default.
- W2113103640 cites W1972647763 @default.
- W2113103640 cites W1976251851 @default.
- W2113103640 cites W1978002454 @default.
- W2113103640 cites W1995691260 @default.
- W2113103640 cites W1998696958 @default.
- W2113103640 cites W2014279061 @default.
- W2113103640 cites W2020451490 @default.
- W2113103640 cites W2022449465 @default.
- W2113103640 cites W2023672325 @default.
- W2113103640 cites W2025984697 @default.
- W2113103640 cites W2033779771 @default.
- W2113103640 cites W2049765964 @default.
- W2113103640 cites W2056592727 @default.
- W2113103640 cites W2062102668 @default.
- W2113103640 cites W2063978378 @default.
- W2113103640 cites W2091083714 @default.
- W2113103640 cites W2116980473 @default.
- W2113103640 cites W2126999940 @default.
- W2113103640 cites W2132984323 @default.
- W2113103640 cites W2133944729 @default.
- W2113103640 cites W2134874509 @default.
- W2113103640 cites W2140514146 @default.
- W2113103640 cites W2143220485 @default.
- W2113103640 cites W2149968328 @default.
- W2113103640 cites W2158940042 @default.
- W2113103640 cites W2171050905 @default.
- W2113103640 cites W2963886855 @default.
- W2113103640 cites W3100041486 @default.
- W2113103640 cites W3101449523 @default.
- W2113103640 cites W3106266785 @default.
- W2113103640 cites W4205462863 @default.
- W2113103640 cites W4233774682 @default.
- W2113103640 cites W4295332281 @default.
- W2113103640 cites W4299296142 @default.
- W2113103640 doi "https://doi.org/10.1080/10618600.2012.679241" @default.
- W2113103640 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3685865" @default.
- W2113103640 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23794794" @default.
- W2113103640 hasPublicationYear "2012" @default.
- W2113103640 type Work @default.
- W2113103640 sameAs 2113103640 @default.
- W2113103640 citedByCount "92" @default.
- W2113103640 countsByYear W21131036402013 @default.
- W2113103640 countsByYear W21131036402014 @default.
- W2113103640 countsByYear W21131036402015 @default.
- W2113103640 countsByYear W21131036402016 @default.
- W2113103640 countsByYear W21131036402017 @default.
- W2113103640 countsByYear W21131036402018 @default.
- W2113103640 countsByYear W21131036402019 @default.
- W2113103640 countsByYear W21131036402020 @default.
- W2113103640 countsByYear W21131036402021 @default.
- W2113103640 countsByYear W21131036402022 @default.
- W2113103640 countsByYear W21131036402023 @default.
- W2113103640 crossrefType "journal-article" @default.
- W2113103640 hasAuthorship W2113103640A5024534947 @default.
- W2113103640 hasAuthorship W2113103640A5081965846 @default.
- W2113103640 hasAuthorship W2113103640A5090191588 @default.
- W2113103640 hasBestOaLocation W21131036402 @default.
- W2113103640 hasConcept C105795698 @default.
- W2113103640 hasConcept C11413529 @default.
- W2113103640 hasConcept C134306372 @default.
- W2113103640 hasConcept C136764020 @default.
- W2113103640 hasConcept C14036430 @default.
- W2113103640 hasConcept C153180895 @default.
- W2113103640 hasConcept C154945302 @default.
- W2113103640 hasConcept C185429906 @default.
- W2113103640 hasConcept C2524010 @default.
- W2113103640 hasConcept C28826006 @default.
- W2113103640 hasConcept C33923547 @default.
- W2113103640 hasConcept C37616216 @default.
- W2113103640 hasConcept C41008148 @default.
- W2113103640 hasConcept C47432892 @default.
- W2113103640 hasConcept C48921125 @default.
- W2113103640 hasConcept C57691317 @default.
- W2113103640 hasConcept C5917680 @default.
- W2113103640 hasConcept C78458016 @default.
- W2113103640 hasConcept C86803240 @default.
- W2113103640 hasConceptScore W2113103640C105795698 @default.
- W2113103640 hasConceptScore W2113103640C11413529 @default.
- W2113103640 hasConceptScore W2113103640C134306372 @default.
- W2113103640 hasConceptScore W2113103640C136764020 @default.
- W2113103640 hasConceptScore W2113103640C14036430 @default.
- W2113103640 hasConceptScore W2113103640C153180895 @default.
- W2113103640 hasConceptScore W2113103640C154945302 @default.
- W2113103640 hasConceptScore W2113103640C185429906 @default.
- W2113103640 hasConceptScore W2113103640C2524010 @default.
- W2113103640 hasConceptScore W2113103640C28826006 @default.
- W2113103640 hasConceptScore W2113103640C33923547 @default.
- W2113103640 hasConceptScore W2113103640C37616216 @default.
- W2113103640 hasConceptScore W2113103640C41008148 @default.