Matches in SemOpenAlex for { <https://semopenalex.org/work/W2113137534> ?p ?o ?g. }
- W2113137534 endingPage "1013" @default.
- W2113137534 startingPage "1003" @default.
- W2113137534 abstract "Volcanogenic massive Cu-Zn-(Pb) sulfide (VMS) deposits occur primarily in subaqueous rift-related environments (e.g., oceanic, fore-arc, arc, back-arc, continental margin, or continental), are hosted primarily by bimodal, mafic-felsic volcanic successions, and are typically associated with felsic volcanic rocks with specific geochemical characteristics. FI alkalic dacites and rhyodacites, despite being abundant in the rock record, are typically barren. Some FII calc-alkalic rhyodacites and rhyolites host VMS deposits, but most are barren. FIII tholeiitic and FIV depleted rhyolites and high silica rhyolites are much less abundant in the rock record but commonly host VMS deposits, regardless of age, and FIII rhyolites appear to host the largest deposits.Most petrogenetic models proposed for the formation of FII and FIII-FIV felsic volcanic rocks link felsic magma genesis to fractionation processes in high-level magma chambers now represented by associated subvolcanic intrusions, where the magma is also interpreted to have supplied the heat and/or metals required to generate and sustain the VMS-forming convective hydrothermal system. However, the relatively constant compositions of FII and FIII-FIV felsic volcanic rocks within individual areas, the high eruptive temperatures (at or above liquidus) of FIII rhyolites, and the bimodality of VMS-hosting volcanic successions indicate that fractional crystallization within subvolcanic intrusions could not have generated or significantly modified the compositions of FII and FIII-FIV magmas. This, coupled with detailed geological, geochemical, and geochronological studies indicates that many of these subvolcanic intrusions were emplaced in multiple phases and that the later, most voluminous phases often cut ore-associated, hydrothermally altered rocks.A reassessment of the physical conditions responsible for producing the geochemistry of ore-associated FII and FIII-FIV felsic volcanic rocks and a review of the compositions of felsic volcanic rocks associated with VMS deposits that range in age from Mesoarchean to Cenozoic provide important constraints on models for VMS-associated felsic volcanic rocks and their relationship to mineralization. The compositions of felsic volcanic rocks may be explained by low to moderate degrees of partial melting of mafic sources at a range of depths within rift environments where the mineralogy and composition of the source regions, modes, and degrees of partial melting, pressure and temperature of melting, and, to a lesser extent, subsequent fractionation processes, account for the compositional variations from FI through FII to FIII-FIV. Long-lived, enhanced heat flow and structural permeability of rift environments that allows partial melting to form some FII rhyolites at midcrustal levels (10–15 km) and FIII-FIV rhyolites at shallow crustal levels (<10 km), both within the zone of brittle fracture permeability, are essential to sustain the high-temperature convective hydrothermal systems that are required to form large VMS deposits and camps. Rift environments contain long-lived, thermal, magmatic, and structural corridors that focus magma ascent, heat flow, high-temperature convective hydrothermal systems, and emplacement of subvolcanic intrusions that are favorable environments for the formation of VMS deposits and FII and FIII-FIV felsic volcanic rocks." @default.
- W2113137534 created "2016-06-24" @default.
- W2113137534 creator A5046424210 @default.
- W2113137534 creator A5049899751 @default.
- W2113137534 creator A5073337836 @default.
- W2113137534 date "2004-08-01" @default.
- W2113137534 modified "2023-10-06" @default.
- W2113137534 title "TRACE ELEMENT GEOCHEMISTRY AND PETROGENESIS OF FELSIC VOLCANIC ROCKS ASSOCIATED WITH VOLCANOGENIC MASSIVE Cu-Zn-Pb SULFIDE DEPOSITS" @default.
- W2113137534 cites W1516433094 @default.
- W2113137534 cites W164818528 @default.
- W2113137534 cites W1922701939 @default.
- W2113137534 cites W1969216041 @default.
- W2113137534 cites W1974586982 @default.
- W2113137534 cites W1980181900 @default.
- W2113137534 cites W1983588511 @default.
- W2113137534 cites W1988826723 @default.
- W2113137534 cites W1988880513 @default.
- W2113137534 cites W1993756003 @default.
- W2113137534 cites W2000122482 @default.
- W2113137534 cites W2001863929 @default.
- W2113137534 cites W2004554674 @default.
- W2113137534 cites W2005272853 @default.
- W2113137534 cites W2005529372 @default.
- W2113137534 cites W2008550076 @default.
- W2113137534 cites W2010949983 @default.
- W2113137534 cites W2011849165 @default.
- W2113137534 cites W2017616334 @default.
- W2113137534 cites W2017811628 @default.
- W2113137534 cites W2035967472 @default.
- W2113137534 cites W2046961523 @default.
- W2113137534 cites W2048704825 @default.
- W2113137534 cites W2053702065 @default.
- W2113137534 cites W2054578927 @default.
- W2113137534 cites W205659000 @default.
- W2113137534 cites W2063228446 @default.
- W2113137534 cites W2067190139 @default.
- W2113137534 cites W2067860282 @default.
- W2113137534 cites W2072798356 @default.
- W2113137534 cites W2072833969 @default.
- W2113137534 cites W2075655478 @default.
- W2113137534 cites W2076727692 @default.
- W2113137534 cites W2079156145 @default.
- W2113137534 cites W2085345382 @default.
- W2113137534 cites W2093779313 @default.
- W2113137534 cites W2094709849 @default.
- W2113137534 cites W2102198333 @default.
- W2113137534 cites W2105910619 @default.
- W2113137534 cites W2108267156 @default.
- W2113137534 cites W2109573693 @default.
- W2113137534 cites W2111423843 @default.
- W2113137534 cites W2114374124 @default.
- W2113137534 cites W2119477694 @default.
- W2113137534 cites W2121405872 @default.
- W2113137534 cites W2127640174 @default.
- W2113137534 cites W2130267644 @default.
- W2113137534 cites W2137210271 @default.
- W2113137534 cites W2139429466 @default.
- W2113137534 cites W2147302222 @default.
- W2113137534 cites W2149572008 @default.
- W2113137534 cites W2151930603 @default.
- W2113137534 cites W2154723253 @default.
- W2113137534 cites W2155917603 @default.
- W2113137534 cites W2156428664 @default.
- W2113137534 cites W2160410873 @default.
- W2113137534 cites W2161928418 @default.
- W2113137534 cites W2165077045 @default.
- W2113137534 cites W2167443768 @default.
- W2113137534 cites W2168724824 @default.
- W2113137534 cites W2169970080 @default.
- W2113137534 cites W2171200618 @default.
- W2113137534 cites W2172276300 @default.
- W2113137534 cites W2267262896 @default.
- W2113137534 cites W2316472930 @default.
- W2113137534 cites W2321257165 @default.
- W2113137534 cites W2334581221 @default.
- W2113137534 cites W2399081271 @default.
- W2113137534 cites W2563197237 @default.
- W2113137534 cites W2599080001 @default.
- W2113137534 cites W2601926677 @default.
- W2113137534 cites W2884635658 @default.
- W2113137534 cites W2908928393 @default.
- W2113137534 cites W2910901780 @default.
- W2113137534 cites W2981353417 @default.
- W2113137534 cites W2982076856 @default.
- W2113137534 cites W2982699971 @default.
- W2113137534 cites W3095735563 @default.
- W2113137534 cites W3097553647 @default.
- W2113137534 cites W3118803057 @default.
- W2113137534 cites W3123874641 @default.
- W2113137534 cites W3126618221 @default.
- W2113137534 cites W3127148437 @default.
- W2113137534 cites W3127427446 @default.
- W2113137534 cites W3128195215 @default.
- W2113137534 cites W2520727899 @default.
- W2113137534 cites W3041681133 @default.
- W2113137534 doi "https://doi.org/10.2113/gsecongeo.99.5.1003" @default.
- W2113137534 hasPublicationYear "2004" @default.
- W2113137534 type Work @default.