Matches in SemOpenAlex for { <https://semopenalex.org/work/W2113141878> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2113141878 abstract "We study the learnability of sets in Ropf <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>n</sup> under the Gaussian distribution, taking Gaussian surface area as the complexity measure of the sets being learned. Let C <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>S</sub> denote the class of all (measurable) sets with surface area at most S. We first show that the class C <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>S</sub> is learnable to any constant accuracy in time n <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>O(S</sup> <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>)</sup> , even in the arbitrary noise (agnostic'') model. Complementing this, we also show that any learning algorithm for C <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>S</sub> information-theoretically requires 2 <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Omega(S</sup> <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>)</sup> examples for learning to constant accuracy. These results together show that Gaussian surface area essentially characterizes the computational complexity of learning under the Gaussian distribution. Our approach yields several new learning results, including the following (all bounds are for learning to any constant accuracy): The class of all convex sets can be agnostically learned in time 2 <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>O</sup> <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>~</sup> <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>(radicn)</sup> (and we prove a 2 <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Omega(radicn)</sup> lower bound for noise-free learning). This is the first subexponential time algorithm for learning general convex sets even in the noise-free (PAC) model. Intersections of k halfspaces can be agnostically learned in time n <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>O(log</sup> <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k)</sup> (cf. Vempala's n <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>O(k)</sup> time algorithm for learning in the noise-free model).Cones (with apex centered at the origin), and spheres witharbitrary radius and center, can be agnostically learned in time poly(n)." @default.
- W2113141878 created "2016-06-24" @default.
- W2113141878 creator A5006626709 @default.
- W2113141878 creator A5014866889 @default.
- W2113141878 creator A5051167298 @default.
- W2113141878 date "2008-10-01" @default.
- W2113141878 modified "2023-10-18" @default.
- W2113141878 title "Learning Geometric Concepts via Gaussian Surface Area" @default.
- W2113141878 cites W1483560004 @default.
- W2113141878 cites W1520252399 @default.
- W2113141878 cites W1529190178 @default.
- W2113141878 cites W1968934255 @default.
- W2113141878 cites W1990770240 @default.
- W2113141878 cites W1991095526 @default.
- W2113141878 cites W1993224830 @default.
- W2113141878 cites W2007597463 @default.
- W2113141878 cites W2015194364 @default.
- W2113141878 cites W2026798797 @default.
- W2113141878 cites W2045313701 @default.
- W2113141878 cites W2045715425 @default.
- W2113141878 cites W2049220294 @default.
- W2113141878 cites W2070705993 @default.
- W2113141878 cites W2081177492 @default.
- W2113141878 cites W2101930583 @default.
- W2113141878 cites W2110400261 @default.
- W2113141878 cites W2144461674 @default.
- W2113141878 cites W2154952480 @default.
- W2113141878 cites W2161959472 @default.
- W2113141878 cites W2546934947 @default.
- W2113141878 cites W4301425558 @default.
- W2113141878 doi "https://doi.org/10.1109/focs.2008.64" @default.
- W2113141878 hasPublicationYear "2008" @default.
- W2113141878 type Work @default.
- W2113141878 sameAs 2113141878 @default.
- W2113141878 citedByCount "93" @default.
- W2113141878 countsByYear W21131418782012 @default.
- W2113141878 countsByYear W21131418782013 @default.
- W2113141878 countsByYear W21131418782014 @default.
- W2113141878 countsByYear W21131418782015 @default.
- W2113141878 countsByYear W21131418782016 @default.
- W2113141878 countsByYear W21131418782017 @default.
- W2113141878 countsByYear W21131418782018 @default.
- W2113141878 countsByYear W21131418782019 @default.
- W2113141878 countsByYear W21131418782020 @default.
- W2113141878 countsByYear W21131418782021 @default.
- W2113141878 countsByYear W21131418782022 @default.
- W2113141878 countsByYear W21131418782023 @default.
- W2113141878 crossrefType "proceedings-article" @default.
- W2113141878 hasAuthorship W2113141878A5006626709 @default.
- W2113141878 hasAuthorship W2113141878A5014866889 @default.
- W2113141878 hasAuthorship W2113141878A5051167298 @default.
- W2113141878 hasBestOaLocation W21131418782 @default.
- W2113141878 hasConcept C11413529 @default.
- W2113141878 hasConcept C154945302 @default.
- W2113141878 hasConcept C2777212361 @default.
- W2113141878 hasConcept C41008148 @default.
- W2113141878 hasConceptScore W2113141878C11413529 @default.
- W2113141878 hasConceptScore W2113141878C154945302 @default.
- W2113141878 hasConceptScore W2113141878C2777212361 @default.
- W2113141878 hasConceptScore W2113141878C41008148 @default.
- W2113141878 hasLocation W21131418781 @default.
- W2113141878 hasLocation W21131418782 @default.
- W2113141878 hasOpenAccess W2113141878 @default.
- W2113141878 hasPrimaryLocation W21131418781 @default.
- W2113141878 hasRelatedWork W2051487156 @default.
- W2113141878 hasRelatedWork W2073681303 @default.
- W2113141878 hasRelatedWork W2317200988 @default.
- W2113141878 hasRelatedWork W2358668433 @default.
- W2113141878 hasRelatedWork W2372895414 @default.
- W2113141878 hasRelatedWork W2376932109 @default.
- W2113141878 hasRelatedWork W2386767533 @default.
- W2113141878 hasRelatedWork W2390279801 @default.
- W2113141878 hasRelatedWork W2748952813 @default.
- W2113141878 hasRelatedWork W2899084033 @default.
- W2113141878 isParatext "false" @default.
- W2113141878 isRetracted "false" @default.
- W2113141878 magId "2113141878" @default.
- W2113141878 workType "article" @default.