Matches in SemOpenAlex for { <https://semopenalex.org/work/W2113147075> ?p ?o ?g. }
- W2113147075 abstract "Ad-hoc sensor networks comprising large numbers of randomly deployed wireless sensors have recently been an active focus of investigation. These networks require self-organized configuration after deployment, and ad-hoc heuristic methods for such configuration have been proposed with regard to many aspects of the networks' performance. However, systematic approaches for such configuration remain elusive. In this paper, we present a preliminary attempt towards such a systematic approach using evolutionary algorithms and reverse engineering. In particular, we focus on the problem of obtaining heterogeneous networks that optimize global functional properties through local adaptive rules. Almost all work on ad-hoc sensor network has so far involved homogeneous networks where all nodes transmit with the same power level, creating a symmetric connectivity. It is possible to construct heterogeneous networks by allowing nodes to transmit at different power levels, and such networks are known to provide improvements in network lifetime, power efficiency, routing, etc. However, such networks are difficult to build mainly because the optimal power level for each node depends on the node location and spatial context, which are not known before deployment. A few heuristic schemes focused on improving power consumption have been proposed in the literature, but the issue has not been investigated sufficiently at a general level. In this paper, we present a new and improved heuristic developed using a reverse engineered approach. A genetic algorithm is used to generate a set of heterogeneous sensor networks that are characterized by low short paths and minimal congestion. Analysis of this optimal network set yields rules that form the basis for a local heuristic. We show that networks adapted using this heuristic produce significant improvement over the homogeneous case. More importantly, the results validate the utility of the proposed approach that can be used in other self-organizing systems." @default.
- W2113147075 created "2016-06-24" @default.
- W2113147075 creator A5020455986 @default.
- W2113147075 creator A5028466910 @default.
- W2113147075 creator A5033722814 @default.
- W2113147075 creator A5068991313 @default.
- W2113147075 date "2006-09-22" @default.
- W2113147075 modified "2023-09-26" @default.
- W2113147075 title "Discovering Adaptive Heuristics for Ad-Hoc Sensor Networks by Mining Evolved Optimal Configurations" @default.
- W2113147075 cites W1523203165 @default.
- W2113147075 cites W1553786746 @default.
- W2113147075 cites W1591067496 @default.
- W2113147075 cites W1593658482 @default.
- W2113147075 cites W1980737779 @default.
- W2113147075 cites W2008620264 @default.
- W2113147075 cites W2018934112 @default.
- W2113147075 cites W2045239101 @default.
- W2113147075 cites W2068602646 @default.
- W2113147075 cites W2072256916 @default.
- W2113147075 cites W2080540350 @default.
- W2113147075 cites W2099156066 @default.
- W2113147075 cites W2099637108 @default.
- W2113147075 cites W2101362089 @default.
- W2113147075 cites W2104828803 @default.
- W2113147075 cites W2104915249 @default.
- W2113147075 cites W2107323919 @default.
- W2113147075 cites W2110792417 @default.
- W2113147075 cites W2111935653 @default.
- W2113147075 cites W2117427846 @default.
- W2113147075 cites W2119799587 @default.
- W2113147075 cites W2125353981 @default.
- W2113147075 cites W2147997621 @default.
- W2113147075 cites W2150050284 @default.
- W2113147075 cites W2153697543 @default.
- W2113147075 cites W2161980199 @default.
- W2113147075 cites W2165122122 @default.
- W2113147075 cites W2169526870 @default.
- W2113147075 cites W2550129994 @default.
- W2113147075 cites W2905110430 @default.
- W2113147075 cites W2908349245 @default.
- W2113147075 cites W3113109455 @default.
- W2113147075 doi "https://doi.org/10.1109/cec.2006.1688696" @default.
- W2113147075 hasPublicationYear "2006" @default.
- W2113147075 type Work @default.
- W2113147075 sameAs 2113147075 @default.
- W2113147075 citedByCount "2" @default.
- W2113147075 crossrefType "proceedings-article" @default.
- W2113147075 hasAuthorship W2113147075A5020455986 @default.
- W2113147075 hasAuthorship W2113147075A5028466910 @default.
- W2113147075 hasAuthorship W2113147075A5033722814 @default.
- W2113147075 hasAuthorship W2113147075A5068991313 @default.
- W2113147075 hasConcept C111919701 @default.
- W2113147075 hasConcept C120314980 @default.
- W2113147075 hasConcept C120665830 @default.
- W2113147075 hasConcept C121332964 @default.
- W2113147075 hasConcept C127413603 @default.
- W2113147075 hasConcept C127705205 @default.
- W2113147075 hasConcept C151730666 @default.
- W2113147075 hasConcept C154945302 @default.
- W2113147075 hasConcept C158379750 @default.
- W2113147075 hasConcept C173801870 @default.
- W2113147075 hasConcept C192209626 @default.
- W2113147075 hasConcept C24590314 @default.
- W2113147075 hasConcept C2779343474 @default.
- W2113147075 hasConcept C31258907 @default.
- W2113147075 hasConcept C41008148 @default.
- W2113147075 hasConcept C555944384 @default.
- W2113147075 hasConcept C62611344 @default.
- W2113147075 hasConcept C66938386 @default.
- W2113147075 hasConcept C74172769 @default.
- W2113147075 hasConcept C76155785 @default.
- W2113147075 hasConcept C86803240 @default.
- W2113147075 hasConcept C91280400 @default.
- W2113147075 hasConcept C94523657 @default.
- W2113147075 hasConceptScore W2113147075C111919701 @default.
- W2113147075 hasConceptScore W2113147075C120314980 @default.
- W2113147075 hasConceptScore W2113147075C120665830 @default.
- W2113147075 hasConceptScore W2113147075C121332964 @default.
- W2113147075 hasConceptScore W2113147075C127413603 @default.
- W2113147075 hasConceptScore W2113147075C127705205 @default.
- W2113147075 hasConceptScore W2113147075C151730666 @default.
- W2113147075 hasConceptScore W2113147075C154945302 @default.
- W2113147075 hasConceptScore W2113147075C158379750 @default.
- W2113147075 hasConceptScore W2113147075C173801870 @default.
- W2113147075 hasConceptScore W2113147075C192209626 @default.
- W2113147075 hasConceptScore W2113147075C24590314 @default.
- W2113147075 hasConceptScore W2113147075C2779343474 @default.
- W2113147075 hasConceptScore W2113147075C31258907 @default.
- W2113147075 hasConceptScore W2113147075C41008148 @default.
- W2113147075 hasConceptScore W2113147075C555944384 @default.
- W2113147075 hasConceptScore W2113147075C62611344 @default.
- W2113147075 hasConceptScore W2113147075C66938386 @default.
- W2113147075 hasConceptScore W2113147075C74172769 @default.
- W2113147075 hasConceptScore W2113147075C76155785 @default.
- W2113147075 hasConceptScore W2113147075C86803240 @default.
- W2113147075 hasConceptScore W2113147075C91280400 @default.
- W2113147075 hasConceptScore W2113147075C94523657 @default.
- W2113147075 hasLocation W21131470751 @default.
- W2113147075 hasOpenAccess W2113147075 @default.
- W2113147075 hasPrimaryLocation W21131470751 @default.