Matches in SemOpenAlex for { <https://semopenalex.org/work/W2113182798> ?p ?o ?g. }
- W2113182798 endingPage "86" @default.
- W2113182798 startingPage "72" @default.
- W2113182798 abstract "Monitoring of the system performance in highly distributed computing environments is a wide research area. In cloud and grid computing, it is usually restricted to the utilization and reliability of the resources. However, in today’s Computational Grids (CGs) and Clouds (CCs), the end users may define the special personal requirements and preferences in the resource and service selection, service functionality and data access. Such requirements may refer to the special individual security conditions for the protection of the data and application codes. Therefore, solving the scheduling problems in modern distributed environments remains still challenging for most of the well known schedulers, and the general functionality of the monitoring systems must be improved to make them efficient as schedulers supporting modules. In this paper, we define a novel model of security-driven grid schedulers supported by an Artificial Neural Network (ANN). ANN module monitors the schedule executions and learns about secure task–machine mappings from the observed machine failures. Then, the metaheuristic grid schedulers (in our case—genetic-based schedulers) are supported by the ANN module through the integration of the sub-optimal schedules generated by the neural network, with the genetic populations of the schedules. The influence of the ANN support on the general schedulers’ performance is examined in the experiments conducted for four types of the grid networks (small, medium, large and very large grids), two security scheduling modes—risky and secure scenarios, and six genetic-based grid schedulers. The generated empirical results show the high effectiveness of such monitoring support in reducing the values of the major scheduling criteria (makespan and flowtime), the run times of the schedulers and the grid resource failures." @default.
- W2113182798 created "2016-06-24" @default.
- W2113182798 creator A5000963620 @default.
- W2113182798 creator A5003909640 @default.
- W2113182798 creator A5013644970 @default.
- W2113182798 creator A5041301604 @default.
- W2113182798 date "2015-10-01" @default.
- W2113182798 modified "2023-09-25" @default.
- W2113182798 title "Artificial Neural Network support to monitoring of the evolutionary driven security aware scheduling in computational distributed environments" @default.
- W2113182798 cites W1575773008 @default.
- W2113182798 cites W1966452561 @default.
- W2113182798 cites W1966513829 @default.
- W2113182798 cites W1967159579 @default.
- W2113182798 cites W1970208768 @default.
- W2113182798 cites W1991817987 @default.
- W2113182798 cites W1996689181 @default.
- W2113182798 cites W1997347482 @default.
- W2113182798 cites W2009577334 @default.
- W2113182798 cites W2019672983 @default.
- W2113182798 cites W2047767319 @default.
- W2113182798 cites W2064651666 @default.
- W2113182798 cites W2070653573 @default.
- W2113182798 cites W2073897805 @default.
- W2113182798 cites W2088129142 @default.
- W2113182798 cites W2091393667 @default.
- W2113182798 cites W2106237852 @default.
- W2113182798 cites W2108165346 @default.
- W2113182798 cites W2128263839 @default.
- W2113182798 cites W2133884536 @default.
- W2113182798 cites W2143136267 @default.
- W2113182798 cites W2143886692 @default.
- W2113182798 cites W2144123107 @default.
- W2113182798 cites W2148777733 @default.
- W2113182798 cites W2159100150 @default.
- W2113182798 cites W2166790918 @default.
- W2113182798 cites W2170392470 @default.
- W2113182798 cites W2782885640 @default.
- W2113182798 doi "https://doi.org/10.1016/j.future.2014.10.031" @default.
- W2113182798 hasPublicationYear "2015" @default.
- W2113182798 type Work @default.
- W2113182798 sameAs 2113182798 @default.
- W2113182798 citedByCount "41" @default.
- W2113182798 countsByYear W21131827982015 @default.
- W2113182798 countsByYear W21131827982016 @default.
- W2113182798 countsByYear W21131827982017 @default.
- W2113182798 countsByYear W21131827982018 @default.
- W2113182798 countsByYear W21131827982019 @default.
- W2113182798 countsByYear W21131827982020 @default.
- W2113182798 countsByYear W21131827982021 @default.
- W2113182798 countsByYear W21131827982022 @default.
- W2113182798 countsByYear W21131827982023 @default.
- W2113182798 crossrefType "journal-article" @default.
- W2113182798 hasAuthorship W2113182798A5000963620 @default.
- W2113182798 hasAuthorship W2113182798A5003909640 @default.
- W2113182798 hasAuthorship W2113182798A5013644970 @default.
- W2113182798 hasAuthorship W2113182798A5041301604 @default.
- W2113182798 hasConcept C111919701 @default.
- W2113182798 hasConcept C119857082 @default.
- W2113182798 hasConcept C120314980 @default.
- W2113182798 hasConcept C154945302 @default.
- W2113182798 hasConcept C162324750 @default.
- W2113182798 hasConcept C187691185 @default.
- W2113182798 hasConcept C206729178 @default.
- W2113182798 hasConcept C21547014 @default.
- W2113182798 hasConcept C2524010 @default.
- W2113182798 hasConcept C33923547 @default.
- W2113182798 hasConcept C41008148 @default.
- W2113182798 hasConcept C50644808 @default.
- W2113182798 hasConcept C68387754 @default.
- W2113182798 hasConcept C70429105 @default.
- W2113182798 hasConcept C79974875 @default.
- W2113182798 hasConcept C8880873 @default.
- W2113182798 hasConceptScore W2113182798C111919701 @default.
- W2113182798 hasConceptScore W2113182798C119857082 @default.
- W2113182798 hasConceptScore W2113182798C120314980 @default.
- W2113182798 hasConceptScore W2113182798C154945302 @default.
- W2113182798 hasConceptScore W2113182798C162324750 @default.
- W2113182798 hasConceptScore W2113182798C187691185 @default.
- W2113182798 hasConceptScore W2113182798C206729178 @default.
- W2113182798 hasConceptScore W2113182798C21547014 @default.
- W2113182798 hasConceptScore W2113182798C2524010 @default.
- W2113182798 hasConceptScore W2113182798C33923547 @default.
- W2113182798 hasConceptScore W2113182798C41008148 @default.
- W2113182798 hasConceptScore W2113182798C50644808 @default.
- W2113182798 hasConceptScore W2113182798C68387754 @default.
- W2113182798 hasConceptScore W2113182798C70429105 @default.
- W2113182798 hasConceptScore W2113182798C79974875 @default.
- W2113182798 hasConceptScore W2113182798C8880873 @default.
- W2113182798 hasLocation W21131827981 @default.
- W2113182798 hasOpenAccess W2113182798 @default.
- W2113182798 hasPrimaryLocation W21131827981 @default.
- W2113182798 hasRelatedWork W1596201972 @default.
- W2113182798 hasRelatedWork W1647989977 @default.
- W2113182798 hasRelatedWork W1657842416 @default.
- W2113182798 hasRelatedWork W2069528938 @default.
- W2113182798 hasRelatedWork W2160425906 @default.
- W2113182798 hasRelatedWork W2367503426 @default.
- W2113182798 hasRelatedWork W2387900022 @default.