Matches in SemOpenAlex for { <https://semopenalex.org/work/W2113244375> ?p ?o ?g. }
- W2113244375 endingPage "2062" @default.
- W2113244375 startingPage "2055" @default.
- W2113244375 abstract "Artificial neural networks (ANNs) have been widely applied in electricity price forecasts due to their nonlinear modeling capabilities. However, it is well known that in general, traditional training methods for ANNs such as back-propagation (BP) approach are normally slow and it could be trapped into local optima. In this paper, a fast electricity market price forecast method is proposed based on a recently emerged learning method for single hidden layer feed-forward neural networks, the extreme learning machine (ELM), to overcome these drawbacks. The new approach also has improved price intervals forecast accuracy by incorporating bootstrapping method for uncertainty estimations. Case studies based on chaos time series and Australian National Electricity Market price series show that the proposed method can effectively capture the nonlinearity from the highly volatile price data series with much less computation time compared with other methods. The results show the great potential of this proposed approach for online accurate price forecasting for the spot market prices analysis." @default.
- W2113244375 created "2016-06-24" @default.
- W2113244375 creator A5012705768 @default.
- W2113244375 creator A5022682543 @default.
- W2113244375 creator A5025167293 @default.
- W2113244375 creator A5030446424 @default.
- W2113244375 creator A5037488807 @default.
- W2113244375 creator A5065418722 @default.
- W2113244375 date "2012-11-01" @default.
- W2113244375 modified "2023-10-06" @default.
- W2113244375 title "Electricity Price Forecasting With Extreme Learning Machine and Bootstrapping" @default.
- W2113244375 cites W1969284299 @default.
- W2113244375 cites W1977393354 @default.
- W2113244375 cites W1985579611 @default.
- W2113244375 cites W1990938413 @default.
- W2113244375 cites W1992102111 @default.
- W2113244375 cites W1994513282 @default.
- W2113244375 cites W2009067475 @default.
- W2113244375 cites W2022877531 @default.
- W2113244375 cites W2024930187 @default.
- W2113244375 cites W2034544282 @default.
- W2113244375 cites W2094631910 @default.
- W2113244375 cites W2096071157 @default.
- W2113244375 cites W2096220984 @default.
- W2113244375 cites W2096987757 @default.
- W2113244375 cites W2098927251 @default.
- W2113244375 cites W2108647521 @default.
- W2113244375 cites W2111072639 @default.
- W2113244375 cites W2115801488 @default.
- W2113244375 cites W2117897510 @default.
- W2113244375 cites W2120094018 @default.
- W2113244375 cites W2122040390 @default.
- W2113244375 cites W2126709108 @default.
- W2113244375 cites W2126831543 @default.
- W2113244375 cites W2132591205 @default.
- W2113244375 cites W2134815257 @default.
- W2113244375 cites W2141695047 @default.
- W2113244375 cites W2151310832 @default.
- W2113244375 cites W2151661063 @default.
- W2113244375 cites W2153136237 @default.
- W2113244375 cites W2155482907 @default.
- W2113244375 cites W2158984605 @default.
- W2113244375 cites W2162112159 @default.
- W2113244375 cites W2169596848 @default.
- W2113244375 cites W2170831719 @default.
- W2113244375 cites W2179681156 @default.
- W2113244375 doi "https://doi.org/10.1109/tpwrs.2012.2190627" @default.
- W2113244375 hasPublicationYear "2012" @default.
- W2113244375 type Work @default.
- W2113244375 sameAs 2113244375 @default.
- W2113244375 citedByCount "212" @default.
- W2113244375 countsByYear W21132443752012 @default.
- W2113244375 countsByYear W21132443752013 @default.
- W2113244375 countsByYear W21132443752014 @default.
- W2113244375 countsByYear W21132443752015 @default.
- W2113244375 countsByYear W21132443752016 @default.
- W2113244375 countsByYear W21132443752017 @default.
- W2113244375 countsByYear W21132443752018 @default.
- W2113244375 countsByYear W21132443752019 @default.
- W2113244375 countsByYear W21132443752020 @default.
- W2113244375 countsByYear W21132443752021 @default.
- W2113244375 countsByYear W21132443752022 @default.
- W2113244375 countsByYear W21132443752023 @default.
- W2113244375 crossrefType "journal-article" @default.
- W2113244375 hasAuthorship W2113244375A5012705768 @default.
- W2113244375 hasAuthorship W2113244375A5022682543 @default.
- W2113244375 hasAuthorship W2113244375A5025167293 @default.
- W2113244375 hasAuthorship W2113244375A5030446424 @default.
- W2113244375 hasAuthorship W2113244375A5037488807 @default.
- W2113244375 hasAuthorship W2113244375A5065418722 @default.
- W2113244375 hasConcept C10138342 @default.
- W2113244375 hasConcept C106306483 @default.
- W2113244375 hasConcept C11413529 @default.
- W2113244375 hasConcept C119599485 @default.
- W2113244375 hasConcept C119857082 @default.
- W2113244375 hasConcept C121332964 @default.
- W2113244375 hasConcept C126255220 @default.
- W2113244375 hasConcept C127413603 @default.
- W2113244375 hasConcept C146733006 @default.
- W2113244375 hasConcept C149782125 @default.
- W2113244375 hasConcept C151406439 @default.
- W2113244375 hasConcept C154945302 @default.
- W2113244375 hasConcept C158622935 @default.
- W2113244375 hasConcept C162324750 @default.
- W2113244375 hasConcept C163068380 @default.
- W2113244375 hasConcept C175223733 @default.
- W2113244375 hasConcept C206658404 @default.
- W2113244375 hasConcept C207609745 @default.
- W2113244375 hasConcept C2780150128 @default.
- W2113244375 hasConcept C2781104810 @default.
- W2113244375 hasConcept C33923547 @default.
- W2113244375 hasConcept C41008148 @default.
- W2113244375 hasConcept C45374587 @default.
- W2113244375 hasConcept C50644808 @default.
- W2113244375 hasConcept C62520636 @default.
- W2113244375 hasConceptScore W2113244375C10138342 @default.
- W2113244375 hasConceptScore W2113244375C106306483 @default.
- W2113244375 hasConceptScore W2113244375C11413529 @default.