Matches in SemOpenAlex for { <https://semopenalex.org/work/W2113274844> ?p ?o ?g. }
- W2113274844 abstract "The telephone'' model has been, for last one hundred thirty years, base of modern telecommunications with virtually no changes in its fundamental concept. The arise of smaller and more powerful computing devices have opened new possibilities. For example, to build systems able to give to user illusion of being talking to remote party as if both where in same place. To achieve this still many challenges have to be overcome. In this thesis, a part of acoustical signal processing problem is treated. To acoustically create illusion of presence, fast and accurate control over sound field in a room is required. The sound field given one or more sources is subject to different acoustical phenomena, such as reflection and diffraction. Because of these, to model or estimate sound field in a room is in general a difficult task. In particular acoustical reflection poses an important challenge. The sound field reflects on walls, ceiling and floor and a moment later those reflections reflect again, and later these reflect again. This recursive process makes number of reflections as a function of time to increase, in general, at a geometric rate. To synthesize an artificial sound field in real time, one has to be able to model these reflections fast and accurately enough. In this thesis a fast algorithm to model sound field in box-shaped rooms is proposed. Part one of this thesis begins with an introduction to topic, here different acoustical phenomena of interest are explained, and concept of room impulse response (RIR) is introduced. The RIR is defined as time-domain signal sensed at a receiver position as generated by a point source that emits an impulse. Assuming a linear time-invariant (LTI) model, if point source emits not an impulse but an arbitrary signal, actual sound field at a given observation location can then be modeled as a convolution of source signal with RIR. Moreover, since we are assuming a linear model, sound field generated by an arbitrary number of point sources emitting arbitrary signals can be easily computed once RIRs from locations of sources to observation locations are known. Efficient computation of RIR is therefore of theoretical and practical interest. Consequently, this part concludes with a summary of most prominent algorithms to simulate RIR. Part two of this thesis contains relevant papers that make up this work. The analysis is given first for case of fully reflective walls. It is noted that in this case all acoustical reflections can be modeled by a set of virtual sources following a periodic structure over a lattice. The whole set of virtual sources is generated by repetitions of a small set of sources called the mother sources''. On other side, Poisson summation formula establishes relation between periodicity and discretization under Fourier transform. Relating these concepts, it is shown that by carefully discretizing spectral representation of RIR of mother sources in free-field, exact periodic structure that makes up sound field in a room can be obtained. This is key idea behind proposed method. Carefully discretizing all domains, and making use of fast Fourier transform (FFT), a fast multichannel RIR simulation method is obtained. Unfortunately this idea only works for fully reflective walls. By allowing walls to have constant complex-valued reflection coefficients (this is, to model absorption and phase shift at walls) sound field of set of virtual sources is not anymore periodic. A generalization of Fourier transform is then introduced. First, a generalized Poisson summation formula is derived. This formula relates discretization in generalized Fourier domain to a geometrically weighted periodic summation in reciprocal domain. Basic properties of this transform are derived, its application to non zero-padded linear convolution is derived, but moreover a fast implementation, called generalized fast Fourier transform (GFFT), is given. The proposed method is then extended to account for walls with constant complex-valued reflection coefficients. It is shown that by separating sound field of mother sources into its orthant-sided parts (the analogue of single-sided parts of a function of a scalar variable), sound field inside a room can be expressed as a sum of geometrically weighted sound fields generated by periodic set of virtual sources. This summation is then related to a sampling condition on generalized spectrum of orthant-sided parts of sound field of mother sources. Using GFFT method simulates RIR given a source at a dense set of spatial positions with very low complexity. In experiments a comparison with a model called mirror image source method (MISM) is given. In one scenario, time MISM would take to compute RIR at a dense set of positions is estimated to be about one and a half years. The newly proposed method computes RIR at all positions in only forty-eight minutes. This shows contrasting difference in computational complexity, making new method an important step on road to simulate realistic sound fields in real time." @default.
- W2113274844 created "2016-06-24" @default.
- W2113274844 creator A5074742771 @default.
- W2113274844 date "2013-11-22" @default.
- W2113274844 modified "2023-09-23" @default.
- W2113274844 title "Low-complexity computer simulation of multichannel room impulse responses" @default.
- W2113274844 cites W1495888171 @default.
- W2113274844 cites W1506809288 @default.
- W2113274844 cites W1515734287 @default.
- W2113274844 cites W1530740946 @default.
- W2113274844 cites W1531520763 @default.
- W2113274844 cites W1533177508 @default.
- W2113274844 cites W1535733662 @default.
- W2113274844 cites W1550164471 @default.
- W2113274844 cites W1573567221 @default.
- W2113274844 cites W163755778 @default.
- W2113274844 cites W1644976598 @default.
- W2113274844 cites W1662767928 @default.
- W2113274844 cites W1726259173 @default.
- W2113274844 cites W1859516437 @default.
- W2113274844 cites W1964603069 @default.
- W2113274844 cites W1965729766 @default.
- W2113274844 cites W1966137552 @default.
- W2113274844 cites W1966529718 @default.
- W2113274844 cites W1967359406 @default.
- W2113274844 cites W1977422919 @default.
- W2113274844 cites W1979372040 @default.
- W2113274844 cites W1984823839 @default.
- W2113274844 cites W1987350696 @default.
- W2113274844 cites W1988909208 @default.
- W2113274844 cites W1990043531 @default.
- W2113274844 cites W1990835870 @default.
- W2113274844 cites W1991471349 @default.
- W2113274844 cites W1993190069 @default.
- W2113274844 cites W1993203440 @default.
- W2113274844 cites W1993594485 @default.
- W2113274844 cites W1995990042 @default.
- W2113274844 cites W2000861327 @default.
- W2113274844 cites W2001902618 @default.
- W2113274844 cites W2003017040 @default.
- W2113274844 cites W2003103624 @default.
- W2113274844 cites W2003894508 @default.
- W2113274844 cites W2009654436 @default.
- W2113274844 cites W2015600496 @default.
- W2113274844 cites W2032578929 @default.
- W2113274844 cites W2037504854 @default.
- W2113274844 cites W2038973535 @default.
- W2113274844 cites W2041305355 @default.
- W2113274844 cites W2042584933 @default.
- W2113274844 cites W2046912120 @default.
- W2113274844 cites W2048630199 @default.
- W2113274844 cites W2049465954 @default.
- W2113274844 cites W2056869875 @default.
- W2113274844 cites W2059929791 @default.
- W2113274844 cites W2060182081 @default.
- W2113274844 cites W2060830712 @default.
- W2113274844 cites W2061248064 @default.
- W2113274844 cites W2062615577 @default.
- W2113274844 cites W2070215586 @default.
- W2113274844 cites W2072680476 @default.
- W2113274844 cites W2075098731 @default.
- W2113274844 cites W2080441807 @default.
- W2113274844 cites W2081470502 @default.
- W2113274844 cites W2081892670 @default.
- W2113274844 cites W2082357614 @default.
- W2113274844 cites W2083582448 @default.
- W2113274844 cites W2085106076 @default.
- W2113274844 cites W2087458881 @default.
- W2113274844 cites W2087940086 @default.
- W2113274844 cites W2096072208 @default.
- W2113274844 cites W2096635414 @default.
- W2113274844 cites W2097225335 @default.
- W2113274844 cites W2097334824 @default.
- W2113274844 cites W2099078048 @default.
- W2113274844 cites W2102182691 @default.
- W2113274844 cites W2106011766 @default.
- W2113274844 cites W2108872752 @default.
- W2113274844 cites W2112996167 @default.
- W2113274844 cites W2115962195 @default.
- W2113274844 cites W2117642716 @default.
- W2113274844 cites W2117678320 @default.
- W2113274844 cites W2117941321 @default.
- W2113274844 cites W2123117067 @default.
- W2113274844 cites W2127492880 @default.
- W2113274844 cites W2128141288 @default.
- W2113274844 cites W2131095492 @default.
- W2113274844 cites W2134347538 @default.
- W2113274844 cites W2134572726 @default.
- W2113274844 cites W2142063750 @default.
- W2113274844 cites W2144313611 @default.
- W2113274844 cites W2144732021 @default.
- W2113274844 cites W2146818192 @default.
- W2113274844 cites W2148309695 @default.
- W2113274844 cites W2149990531 @default.
- W2113274844 cites W2150269048 @default.
- W2113274844 cites W2151938450 @default.
- W2113274844 cites W2154900287 @default.
- W2113274844 cites W2158995076 @default.
- W2113274844 cites W2168857243 @default.
- W2113274844 cites W2171131704 @default.