Matches in SemOpenAlex for { <https://semopenalex.org/work/W2113282793> ?p ?o ?g. }
- W2113282793 endingPage "169" @default.
- W2113282793 startingPage "155" @default.
- W2113282793 abstract "Breast cancer is the most frequently diagnosed malignancy and the second leading cause of mortality in women. In the last decade, ultrasound along with digital mammography has come to be regarded as the gold standard for breast cancer diagnosis. Automatically detecting tumors and extracting lesion boundaries in ultrasound images is difficult due to their specular nature and the variance in shape and appearance of sonographic lesions. Past work on automated ultrasonic breast lesion segmentation has not addressed important issues such as shadowing artifacts or dealing with similar tumor like structures in the sonogram. Algorithms that claim to automatically classify ultrasonic breast lesions, rely on manual delineation of the tumor boundaries. In this paper, we present a novel technique to automatically find lesion margins in ultrasound images, by combining intensity and texture with empirical domain specific knowledge along with directional gradient and a deformable shape-based model. The images are first filtered to remove speckle noise and then contrast enhanced to emphasize the tumor regions. For the first time, a mathematical formulation of the empirical rules used by radiologists in detecting ultrasonic breast lesions, popularly known as the Stavros Criteria is presented in this paper. We have applied this formulation to automatically determine a seed point within the image. Probabilistic classification of image pixels based on intensity and texture is followed by region growing using the automatically determined seed point to obtain an initial segmentation of the lesion. Boundary points are found on the directional gradient of the image. Outliers are removed by a process of recursive refinement. These boundary points are then supplied as an initial estimate to a deformable model. Incorporating empirical domain specific knowledge along with low and high-level knowledge makes it possible to avoid shadowing artifacts and lowers the chance of confusing similar tumor like structures for the lesion. The system was validated on a database of breast sonograms for 42 patients. The average mean boundary error between manual and automated segmentation was 6.6 pixels and the normalized true positive area overlap was 75.1%. The algorithm was found to be robust to 1) variations in system parameters, 2) number of training samples used, and 3) the position of the seed point within the tumor. Running time for segmenting a single sonogram was 18 s on a 1.8-GHz Pentium machine." @default.
- W2113282793 created "2016-06-24" @default.
- W2113282793 creator A5027642699 @default.
- W2113282793 creator A5064437234 @default.
- W2113282793 date "2003-02-01" @default.
- W2113282793 modified "2023-09-30" @default.
- W2113282793 title "Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions" @default.
- W2113282793 cites W1525571577 @default.
- W2113282793 cites W1539336247 @default.
- W2113282793 cites W1604560198 @default.
- W2113282793 cites W1807815129 @default.
- W2113282793 cites W1837693043 @default.
- W2113282793 cites W1957595404 @default.
- W2113282793 cites W1969287966 @default.
- W2113282793 cites W2003056625 @default.
- W2113282793 cites W2017877823 @default.
- W2113282793 cites W2018993957 @default.
- W2113282793 cites W2024783313 @default.
- W2113282793 cites W2028672930 @default.
- W2113282793 cites W2045234411 @default.
- W2113282793 cites W2046560522 @default.
- W2113282793 cites W2047263310 @default.
- W2113282793 cites W2087998819 @default.
- W2113282793 cites W2097222278 @default.
- W2113282793 cites W2099105076 @default.
- W2113282793 cites W2101851277 @default.
- W2113282793 cites W2104095591 @default.
- W2113282793 cites W2105967067 @default.
- W2113282793 cites W2105998805 @default.
- W2113282793 cites W2106904753 @default.
- W2113282793 cites W2113358471 @default.
- W2113282793 cites W2113622874 @default.
- W2113282793 cites W2118322242 @default.
- W2113282793 cites W2123139184 @default.
- W2113282793 cites W2127186954 @default.
- W2113282793 cites W2131927416 @default.
- W2113282793 cites W2133383864 @default.
- W2113282793 cites W2134466238 @default.
- W2113282793 cites W2134916573 @default.
- W2113282793 cites W2137063708 @default.
- W2113282793 cites W2137367648 @default.
- W2113282793 cites W2140180202 @default.
- W2113282793 cites W2146512765 @default.
- W2113282793 cites W2148124778 @default.
- W2113282793 cites W2148518080 @default.
- W2113282793 cites W2152826865 @default.
- W2113282793 cites W2160225702 @default.
- W2113282793 cites W2163714625 @default.
- W2113282793 cites W2163818882 @default.
- W2113282793 cites W2164213525 @default.
- W2113282793 cites W2164710647 @default.
- W2113282793 cites W2169388041 @default.
- W2113282793 cites W2171234627 @default.
- W2113282793 cites W2543386312 @default.
- W2113282793 cites W3016413756 @default.
- W2113282793 cites W4366956054 @default.
- W2113282793 doi "https://doi.org/10.1109/tmi.2002.808364" @default.
- W2113282793 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12715992" @default.
- W2113282793 hasPublicationYear "2003" @default.
- W2113282793 type Work @default.
- W2113282793 sameAs 2113282793 @default.
- W2113282793 citedByCount "269" @default.
- W2113282793 countsByYear W21132827932012 @default.
- W2113282793 countsByYear W21132827932013 @default.
- W2113282793 countsByYear W21132827932014 @default.
- W2113282793 countsByYear W21132827932015 @default.
- W2113282793 countsByYear W21132827932016 @default.
- W2113282793 countsByYear W21132827932017 @default.
- W2113282793 countsByYear W21132827932018 @default.
- W2113282793 countsByYear W21132827932019 @default.
- W2113282793 countsByYear W21132827932020 @default.
- W2113282793 countsByYear W21132827932021 @default.
- W2113282793 countsByYear W21132827932022 @default.
- W2113282793 countsByYear W21132827932023 @default.
- W2113282793 crossrefType "journal-article" @default.
- W2113282793 hasAuthorship W2113282793A5027642699 @default.
- W2113282793 hasAuthorship W2113282793A5064437234 @default.
- W2113282793 hasConcept C102290492 @default.
- W2113282793 hasConcept C115961682 @default.
- W2113282793 hasConcept C121608353 @default.
- W2113282793 hasConcept C124504099 @default.
- W2113282793 hasConcept C126322002 @default.
- W2113282793 hasConcept C126838900 @default.
- W2113282793 hasConcept C143753070 @default.
- W2113282793 hasConcept C153180895 @default.
- W2113282793 hasConcept C154945302 @default.
- W2113282793 hasConcept C160633673 @default.
- W2113282793 hasConcept C180940675 @default.
- W2113282793 hasConcept C2777423100 @default.
- W2113282793 hasConcept C2780472235 @default.
- W2113282793 hasConcept C31972630 @default.
- W2113282793 hasConcept C41008148 @default.
- W2113282793 hasConcept C530470458 @default.
- W2113282793 hasConcept C71924100 @default.
- W2113282793 hasConcept C81288441 @default.
- W2113282793 hasConcept C89600930 @default.
- W2113282793 hasConcept C99498987 @default.
- W2113282793 hasConceptScore W2113282793C102290492 @default.