Matches in SemOpenAlex for { <https://semopenalex.org/work/W2113306642> ?p ?o ?g. }
- W2113306642 endingPage "1050" @default.
- W2113306642 startingPage "1037" @default.
- W2113306642 abstract "Abstract. Global change, together with human activities, has resulted in increasing amounts of organic material (including nutrients) that water bodies receive. This input further attenuates the penetration of solar radiation, leading to the view that opaque lakes are more protected from solar ultraviolet radiation (UVR) than clear ones. Vertical mixing, however, complicates this view as cells are exposed to fluctuating radiation regimes, for which the effects have, in general, been neglected. Furthermore, the combined impacts of mixing, together with those of UVR and nutrient inputs are virtually unknown. In this study, we carried out complex in situ experiments in three high mountain lakes of Spain (Lake Enol in the National Park Picos de Europa, Asturias, and lakes Las Yeguas and La Caldera in the National Park Sierra Nevada, Granada), used as model ecosystems to evaluate the joint impact of these climate change variables. The main goal of this study was to address the question of how short-term pulses of nutrient inputs, together with vertical mixing and increased UVR fluxes modify the photosynthetic responses of phytoplankton. The experimentation consisted in all possible combinations of the following treatments: (a) solar radiation: UVR &plus; PAR (280–700 nm) versus PAR (photosynthetically active radiation) alone (400–700 nm); (b) nutrient addition (phosphorus (P) and nitrogen (N)): ambient versus addition (P to reach to a final concentration of 30 μg P L−1, and N to reach N:P molar ratio of 31); and (c) mixing: mixed (one rotation from surface to 3 m depth (speed of 1 m 4 min−1, total of 10 cycles)) versus static. Our findings suggest that under ambient nutrient conditions there is a synergistic effect between vertical mixing and UVR, increasing phytoplankton photosynthetic inhibition and excretion of organic carbon (EOC) from opaque lakes as compared to algae that received constant mean irradiance within the epilimnion. The opposite occurs in clear lakes where antagonistic effects were determined, with mixing partially counteracting the negative effects of UVR. Nutrient input, mimicking atmospheric pulses from Saharan dust, reversed this effect and clear lakes became more inhibited during mixing, while opaque lakes benefited from the fluctuating irradiance regime. These climate change related scenarios of nutrient input and increased mixing, would not only affect photosynthesis and production in lakes, but might also further influence the microbial loop and trophic interactions via enhanced EOC under fluctuating UVR exposure." @default.
- W2113306642 created "2016-06-24" @default.
- W2113306642 creator A5000874582 @default.
- W2113306642 creator A5002072237 @default.
- W2113306642 creator A5040309929 @default.
- W2113306642 creator A5044359292 @default.
- W2113306642 creator A5051537116 @default.
- W2113306642 creator A5064825536 @default.
- W2113306642 creator A5070440502 @default.
- W2113306642 date "2013-02-14" @default.
- W2113306642 modified "2023-10-18" @default.
- W2113306642 title "Interactive effects of vertical mixing, nutrients and ultraviolet radiation: in situ photosynthetic responses of phytoplankton from high mountain lakes in Southern Europe" @default.
- W2113306642 cites W1547723671 @default.
- W2113306642 cites W1578761467 @default.
- W2113306642 cites W1622458122 @default.
- W2113306642 cites W1631292470 @default.
- W2113306642 cites W1748347525 @default.
- W2113306642 cites W1836977658 @default.
- W2113306642 cites W1859252186 @default.
- W2113306642 cites W1959478639 @default.
- W2113306642 cites W1965030770 @default.
- W2113306642 cites W1966550911 @default.
- W2113306642 cites W1967641564 @default.
- W2113306642 cites W1969884207 @default.
- W2113306642 cites W1976925345 @default.
- W2113306642 cites W1980583674 @default.
- W2113306642 cites W1984131369 @default.
- W2113306642 cites W1985007335 @default.
- W2113306642 cites W1987641062 @default.
- W2113306642 cites W1992651030 @default.
- W2113306642 cites W1994255192 @default.
- W2113306642 cites W1996239808 @default.
- W2113306642 cites W2012012141 @default.
- W2113306642 cites W2019481468 @default.
- W2113306642 cites W2031228068 @default.
- W2113306642 cites W2033964207 @default.
- W2113306642 cites W2047945785 @default.
- W2113306642 cites W2049516721 @default.
- W2113306642 cites W2052275621 @default.
- W2113306642 cites W2056082161 @default.
- W2113306642 cites W2066207789 @default.
- W2113306642 cites W2095243240 @default.
- W2113306642 cites W2097106191 @default.
- W2113306642 cites W2099675224 @default.
- W2113306642 cites W2102498618 @default.
- W2113306642 cites W2103694218 @default.
- W2113306642 cites W2112307641 @default.
- W2113306642 cites W2112485051 @default.
- W2113306642 cites W2116877371 @default.
- W2113306642 cites W2120175892 @default.
- W2113306642 cites W2120442508 @default.
- W2113306642 cites W2120544856 @default.
- W2113306642 cites W2120711795 @default.
- W2113306642 cites W2125477697 @default.
- W2113306642 cites W2126797498 @default.
- W2113306642 cites W2132527497 @default.
- W2113306642 cites W2132689897 @default.
- W2113306642 cites W2132941080 @default.
- W2113306642 cites W2135598978 @default.
- W2113306642 cites W2141707587 @default.
- W2113306642 cites W2145350205 @default.
- W2113306642 cites W2146726764 @default.
- W2113306642 cites W2152950098 @default.
- W2113306642 cites W2155109186 @default.
- W2113306642 cites W2158176548 @default.
- W2113306642 cites W2159810809 @default.
- W2113306642 cites W2164689991 @default.
- W2113306642 cites W2165324884 @default.
- W2113306642 cites W2238269907 @default.
- W2113306642 cites W2324311377 @default.
- W2113306642 cites W4243962102 @default.
- W2113306642 cites W4252692733 @default.
- W2113306642 cites W8219411 @default.
- W2113306642 doi "https://doi.org/10.5194/bg-10-1037-2013" @default.
- W2113306642 hasPublicationYear "2013" @default.
- W2113306642 type Work @default.
- W2113306642 sameAs 2113306642 @default.
- W2113306642 citedByCount "30" @default.
- W2113306642 countsByYear W21133066422013 @default.
- W2113306642 countsByYear W21133066422014 @default.
- W2113306642 countsByYear W21133066422015 @default.
- W2113306642 countsByYear W21133066422016 @default.
- W2113306642 countsByYear W21133066422017 @default.
- W2113306642 countsByYear W21133066422018 @default.
- W2113306642 countsByYear W21133066422019 @default.
- W2113306642 countsByYear W21133066422020 @default.
- W2113306642 countsByYear W21133066422021 @default.
- W2113306642 countsByYear W21133066422022 @default.
- W2113306642 crossrefType "journal-article" @default.
- W2113306642 hasAuthorship W2113306642A5000874582 @default.
- W2113306642 hasAuthorship W2113306642A5002072237 @default.
- W2113306642 hasAuthorship W2113306642A5040309929 @default.
- W2113306642 hasAuthorship W2113306642A5044359292 @default.
- W2113306642 hasAuthorship W2113306642A5051537116 @default.
- W2113306642 hasAuthorship W2113306642A5064825536 @default.
- W2113306642 hasAuthorship W2113306642A5070440502 @default.
- W2113306642 hasBestOaLocation W21133066421 @default.
- W2113306642 hasConcept C107872376 @default.