Matches in SemOpenAlex for { <https://semopenalex.org/work/W2113368402> ?p ?o ?g. }
- W2113368402 endingPage "376" @default.
- W2113368402 startingPage "362" @default.
- W2113368402 abstract "In semiconductor manufacturing plants, monitoring physical properties of all wafers is crucial to maintain good yield and high quality standards. However, such an approach is too costly, and in practice, only few wafers in a lot are actually monitored. Virtual metrology (VM) systems allow to partly overcome the lack of physical metrology. In a VM scheme, tool data are used to predict, for every wafer, metrology measurements. In this paper, we present a VM system for a chemical vapor deposition (CVD) process. On the basis of the available metrology results and of the knowledge, for every wafer, of equipment variables, it is possible to predict CVD thickness. In this work, we propose a VM module based on least angle regression to overcome the problem of high dimensionality and model interpretability. We also present a statistical distance‐based clustering approach for the modeling of the whole tool production. The proposed VM models have been tested on industrial production data sets. Copyright © 2012 John Wiley & Sons, Ltd." @default.
- W2113368402 created "2016-06-24" @default.
- W2113368402 creator A5026617079 @default.
- W2113368402 creator A5043391732 @default.
- W2113368402 date "2012-09-17" @default.
- W2113368402 modified "2023-09-23" @default.
- W2113368402 title "A virtual metrology system based on least angle regression and statistical clustering" @default.
- W2113368402 cites W152055444 @default.
- W2113368402 cites W1965555277 @default.
- W2113368402 cites W1977471222 @default.
- W2113368402 cites W2000728417 @default.
- W2113368402 cites W2019311812 @default.
- W2113368402 cites W2033872649 @default.
- W2113368402 cites W2039708501 @default.
- W2113368402 cites W204885769 @default.
- W2113368402 cites W2060880752 @default.
- W2113368402 cites W2063978378 @default.
- W2113368402 cites W2070963892 @default.
- W2113368402 cites W2071861244 @default.
- W2113368402 cites W2075852334 @default.
- W2113368402 cites W2077562320 @default.
- W2113368402 cites W2099244771 @default.
- W2113368402 cites W2101827854 @default.
- W2113368402 cites W2104897439 @default.
- W2113368402 cites W2105355692 @default.
- W2113368402 cites W2111567017 @default.
- W2113368402 cites W2111845770 @default.
- W2113368402 cites W2115571336 @default.
- W2113368402 cites W2120130912 @default.
- W2113368402 cites W2123513648 @default.
- W2113368402 cites W2126811073 @default.
- W2113368402 cites W2129319600 @default.
- W2113368402 cites W2132797624 @default.
- W2113368402 cites W2135046866 @default.
- W2113368402 cites W2140758165 @default.
- W2113368402 cites W2147572077 @default.
- W2113368402 cites W2147973445 @default.
- W2113368402 cites W2151505334 @default.
- W2113368402 cites W2154829656 @default.
- W2113368402 cites W2155614680 @default.
- W2113368402 cites W2166774870 @default.
- W2113368402 cites W2171789818 @default.
- W2113368402 cites W2346456480 @default.
- W2113368402 doi "https://doi.org/10.1002/asmb.1948" @default.
- W2113368402 hasPublicationYear "2012" @default.
- W2113368402 type Work @default.
- W2113368402 sameAs 2113368402 @default.
- W2113368402 citedByCount "19" @default.
- W2113368402 countsByYear W21133684022012 @default.
- W2113368402 countsByYear W21133684022013 @default.
- W2113368402 countsByYear W21133684022014 @default.
- W2113368402 countsByYear W21133684022015 @default.
- W2113368402 countsByYear W21133684022016 @default.
- W2113368402 countsByYear W21133684022017 @default.
- W2113368402 countsByYear W21133684022018 @default.
- W2113368402 countsByYear W21133684022019 @default.
- W2113368402 countsByYear W21133684022020 @default.
- W2113368402 countsByYear W21133684022021 @default.
- W2113368402 countsByYear W21133684022022 @default.
- W2113368402 crossrefType "journal-article" @default.
- W2113368402 hasAuthorship W2113368402A5026617079 @default.
- W2113368402 hasAuthorship W2113368402A5043391732 @default.
- W2113368402 hasConcept C105795698 @default.
- W2113368402 hasConcept C119857082 @default.
- W2113368402 hasConcept C124101348 @default.
- W2113368402 hasConcept C127413603 @default.
- W2113368402 hasConcept C160671074 @default.
- W2113368402 hasConcept C171250308 @default.
- W2113368402 hasConcept C192562407 @default.
- W2113368402 hasConcept C195766429 @default.
- W2113368402 hasConcept C200601418 @default.
- W2113368402 hasConcept C21880701 @default.
- W2113368402 hasConcept C2781067378 @default.
- W2113368402 hasConcept C33923547 @default.
- W2113368402 hasConcept C41008148 @default.
- W2113368402 hasConcept C66018809 @default.
- W2113368402 hasConcept C73555534 @default.
- W2113368402 hasConceptScore W2113368402C105795698 @default.
- W2113368402 hasConceptScore W2113368402C119857082 @default.
- W2113368402 hasConceptScore W2113368402C124101348 @default.
- W2113368402 hasConceptScore W2113368402C127413603 @default.
- W2113368402 hasConceptScore W2113368402C160671074 @default.
- W2113368402 hasConceptScore W2113368402C171250308 @default.
- W2113368402 hasConceptScore W2113368402C192562407 @default.
- W2113368402 hasConceptScore W2113368402C195766429 @default.
- W2113368402 hasConceptScore W2113368402C200601418 @default.
- W2113368402 hasConceptScore W2113368402C21880701 @default.
- W2113368402 hasConceptScore W2113368402C2781067378 @default.
- W2113368402 hasConceptScore W2113368402C33923547 @default.
- W2113368402 hasConceptScore W2113368402C41008148 @default.
- W2113368402 hasConceptScore W2113368402C66018809 @default.
- W2113368402 hasConceptScore W2113368402C73555534 @default.
- W2113368402 hasIssue "4" @default.
- W2113368402 hasLocation W21133684021 @default.
- W2113368402 hasOpenAccess W2113368402 @default.
- W2113368402 hasPrimaryLocation W21133684021 @default.
- W2113368402 hasRelatedWork W1488705670 @default.
- W2113368402 hasRelatedWork W1569794200 @default.