Matches in SemOpenAlex for { <https://semopenalex.org/work/W2113443148> ?p ?o ?g. }
- W2113443148 endingPage "105" @default.
- W2113443148 startingPage "43" @default.
- W2113443148 abstract "In spite of the huge progress in studies on solitary waves in the seventies and eighties of the XX century as well as their practical importance, the theory of solitons is far from being complete. Only in 1989, Longuet-Higgins in his numerical experiments discovered one-dimensional solitons for gravity–capillary waves in deep water. These solitons essentially differed from those in shallow water where the KDV equation could be used. Being localized, these solitons, unlike the KDV solitons, contain many oscillations in their shape. The number of oscillations was found to increase while approaching the maximal phase velocity for linear gravity–capillary waves and simultaneously the soliton amplitude was demonstrated to vanish. In fact, it was the first time ever that the bifurcation of solitons was observed. This review discusses bifurcations of solitons, both supercritical and subcritical, with applications to fluids and nonlinear optics as well. The main attention is paid to the universality of soliton behavior and stability of solitons while approaching supercritical bifurcations. For all physical models considered in this review, solitons are stationary points of the corresponding Hamiltonian for the fixed integrals of motion, i.e., the total momentum, number of quasi-particles, etc. Two approaches are used for the soliton stability analysis. The first method is based on the Lyapunov theory and another one is connected with the linear stability criterion of the Vakhitov–Kolokolov type. The Lyapunov stability proof is maintained by means of application of the integral majorized inequalities being sequences of the Sobolev embedding theorem. This allows one to demonstrate the boundedness of the Hamiltonians and show that solitons, as stationary points, which realize the minimum (or maximum) of the Hamiltonian, are stable in the Lyapunov sense. In the case of unstable solitons, the nonlinear stage of their instability near the bifurcation point results in the distraction of the solitons due to the wave collapse." @default.
- W2113443148 created "2016-06-24" @default.
- W2113443148 creator A5019524802 @default.
- W2113443148 creator A5038689239 @default.
- W2113443148 date "2011-10-01" @default.
- W2113443148 modified "2023-10-18" @default.
- W2113443148 title "Bifurcations of solitons and their stability" @default.
- W2113443148 cites W1589535278 @default.
- W2113443148 cites W1964122263 @default.
- W2113443148 cites W1964581478 @default.
- W2113443148 cites W1966506813 @default.
- W2113443148 cites W1975260938 @default.
- W2113443148 cites W1979778957 @default.
- W2113443148 cites W1981131802 @default.
- W2113443148 cites W1982562581 @default.
- W2113443148 cites W1989965145 @default.
- W2113443148 cites W1992398314 @default.
- W2113443148 cites W2001527277 @default.
- W2113443148 cites W2001859080 @default.
- W2113443148 cites W2012079573 @default.
- W2113443148 cites W2017506422 @default.
- W2113443148 cites W2018709233 @default.
- W2113443148 cites W2020225165 @default.
- W2113443148 cites W2021253899 @default.
- W2113443148 cites W2022028964 @default.
- W2113443148 cites W2024793963 @default.
- W2113443148 cites W2025398195 @default.
- W2113443148 cites W2030228458 @default.
- W2113443148 cites W2030669316 @default.
- W2113443148 cites W2031211082 @default.
- W2113443148 cites W2031748383 @default.
- W2113443148 cites W2041050579 @default.
- W2113443148 cites W2042338802 @default.
- W2113443148 cites W2054406296 @default.
- W2113443148 cites W2055790946 @default.
- W2113443148 cites W2056101661 @default.
- W2113443148 cites W2058417325 @default.
- W2113443148 cites W2058497467 @default.
- W2113443148 cites W2062739736 @default.
- W2113443148 cites W2067768315 @default.
- W2113443148 cites W2071501330 @default.
- W2113443148 cites W2073756121 @default.
- W2113443148 cites W2075538631 @default.
- W2113443148 cites W2083932763 @default.
- W2113443148 cites W2089085626 @default.
- W2113443148 cites W2090791104 @default.
- W2113443148 cites W2091500259 @default.
- W2113443148 cites W2093234799 @default.
- W2113443148 cites W2094322409 @default.
- W2113443148 cites W2095669631 @default.
- W2113443148 cites W2099317565 @default.
- W2113443148 cites W2110510565 @default.
- W2113443148 cites W2117178111 @default.
- W2113443148 cites W2127728240 @default.
- W2113443148 cites W2129300940 @default.
- W2113443148 cites W2135242150 @default.
- W2113443148 cites W2145121432 @default.
- W2113443148 cites W2148588909 @default.
- W2113443148 cites W2155566813 @default.
- W2113443148 cites W2477643984 @default.
- W2113443148 cites W3106211783 @default.
- W2113443148 cites W4243305051 @default.
- W2113443148 doi "https://doi.org/10.1016/j.physrep.2011.06.002" @default.
- W2113443148 hasPublicationYear "2011" @default.
- W2113443148 type Work @default.
- W2113443148 sameAs 2113443148 @default.
- W2113443148 citedByCount "84" @default.
- W2113443148 countsByYear W21134431482012 @default.
- W2113443148 countsByYear W21134431482013 @default.
- W2113443148 countsByYear W21134431482014 @default.
- W2113443148 countsByYear W21134431482015 @default.
- W2113443148 countsByYear W21134431482016 @default.
- W2113443148 countsByYear W21134431482017 @default.
- W2113443148 countsByYear W21134431482018 @default.
- W2113443148 countsByYear W21134431482019 @default.
- W2113443148 countsByYear W21134431482020 @default.
- W2113443148 countsByYear W21134431482021 @default.
- W2113443148 countsByYear W21134431482022 @default.
- W2113443148 crossrefType "journal-article" @default.
- W2113443148 hasAuthorship W2113443148A5019524802 @default.
- W2113443148 hasAuthorship W2113443148A5038689239 @default.
- W2113443148 hasConcept C121332964 @default.
- W2113443148 hasConcept C126255220 @default.
- W2113443148 hasConcept C130787639 @default.
- W2113443148 hasConcept C146630112 @default.
- W2113443148 hasConcept C158622935 @default.
- W2113443148 hasConcept C180205008 @default.
- W2113443148 hasConcept C191544260 @default.
- W2113443148 hasConcept C33923547 @default.
- W2113443148 hasConcept C37914503 @default.
- W2113443148 hasConcept C43466630 @default.
- W2113443148 hasConcept C62520636 @default.
- W2113443148 hasConcept C74650414 @default.
- W2113443148 hasConcept C87651913 @default.
- W2113443148 hasConcept C88221313 @default.
- W2113443148 hasConceptScore W2113443148C121332964 @default.
- W2113443148 hasConceptScore W2113443148C126255220 @default.
- W2113443148 hasConceptScore W2113443148C130787639 @default.