Matches in SemOpenAlex for { <https://semopenalex.org/work/W2113444807> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2113444807 endingPage "513" @default.
- W2113444807 startingPage "503" @default.
- W2113444807 abstract "As in Rogers [3], we treat the partial degrees as notational variants of the enumeration degrees (that is, the partial degree of a function is identified with the enumeration degree of its graph). We showed in [1] that there are no minimal partial degrees. The purpose of this paper is to show that the partial degrees below 0′ (that is, the partial degrees of the Σ 2 partial functions) are dense. From this we see that the Σ 2 sets play an analagous role within the enumeration degrees to that played by the recursively enumerable sets within the Turing degrees. The techniques, of course, are very different to those required to prove the Sacks Density Theorem (see [4, p. 20]) for the recursively enumerable Turing degrees. Notation and terminology are similar to those of [1]. In particular, W e , D x , 〈 m, n 〉, ψ e are, respectively, notations for the e th r.e. set in a given standard listing of the r.e. sets, the finite set whose canonical index is x , the recursive code for ( m, n ) and the e th enumeration operator (derived from W e ). Recursive approximations etc. are also defined as in [1]. Theorem 1. If B and C are Σ 2 sets of numbers, and B ≰ e C, then there is an e-operator Θ with Proof. We enumerate an e -operator Θ so as to satisfy the list of conditions: Let { B s ∣ s ≥ 0}, { C s ∣ s ≥ 0} be recursive sequences of approximations to B, C respectively, for which, for each х , х ∈ B ⇔ (∃ s *)(∀ s ≥ s *)( х ∈ B s ) and х ∈ C ⇔ (∃ s *)(∀s ≥ s *)( х ∈ C s )." @default.
- W2113444807 created "2016-06-24" @default.
- W2113444807 creator A5076862599 @default.
- W2113444807 date "1984-06-01" @default.
- W2113444807 modified "2023-09-23" @default.
- W2113444807 title "Partial degrees and the density problem. Part 2: The enumeration degrees of the <i>Σ</i><sub>2</sub> sets are dense" @default.
- W2113444807 cites W1483777631 @default.
- W2113444807 doi "https://doi.org/10.2307/2274181" @default.
- W2113444807 hasPublicationYear "1984" @default.
- W2113444807 type Work @default.
- W2113444807 sameAs 2113444807 @default.
- W2113444807 citedByCount "60" @default.
- W2113444807 countsByYear W21134448072012 @default.
- W2113444807 countsByYear W21134448072013 @default.
- W2113444807 countsByYear W21134448072014 @default.
- W2113444807 countsByYear W21134448072015 @default.
- W2113444807 countsByYear W21134448072016 @default.
- W2113444807 countsByYear W21134448072017 @default.
- W2113444807 countsByYear W21134448072018 @default.
- W2113444807 countsByYear W21134448072019 @default.
- W2113444807 countsByYear W21134448072021 @default.
- W2113444807 countsByYear W21134448072022 @default.
- W2113444807 countsByYear W21134448072023 @default.
- W2113444807 crossrefType "journal-article" @default.
- W2113444807 hasAuthorship W2113444807A5076862599 @default.
- W2113444807 hasConcept C104317684 @default.
- W2113444807 hasConcept C111142201 @default.
- W2113444807 hasConcept C114614502 @default.
- W2113444807 hasConcept C118615104 @default.
- W2113444807 hasConcept C156340839 @default.
- W2113444807 hasConcept C158448853 @default.
- W2113444807 hasConcept C17020691 @default.
- W2113444807 hasConcept C182359184 @default.
- W2113444807 hasConcept C185592680 @default.
- W2113444807 hasConcept C203702658 @default.
- W2113444807 hasConcept C33923547 @default.
- W2113444807 hasConcept C45357846 @default.
- W2113444807 hasConcept C55493867 @default.
- W2113444807 hasConcept C86339819 @default.
- W2113444807 hasConcept C94375191 @default.
- W2113444807 hasConceptScore W2113444807C104317684 @default.
- W2113444807 hasConceptScore W2113444807C111142201 @default.
- W2113444807 hasConceptScore W2113444807C114614502 @default.
- W2113444807 hasConceptScore W2113444807C118615104 @default.
- W2113444807 hasConceptScore W2113444807C156340839 @default.
- W2113444807 hasConceptScore W2113444807C158448853 @default.
- W2113444807 hasConceptScore W2113444807C17020691 @default.
- W2113444807 hasConceptScore W2113444807C182359184 @default.
- W2113444807 hasConceptScore W2113444807C185592680 @default.
- W2113444807 hasConceptScore W2113444807C203702658 @default.
- W2113444807 hasConceptScore W2113444807C33923547 @default.
- W2113444807 hasConceptScore W2113444807C45357846 @default.
- W2113444807 hasConceptScore W2113444807C55493867 @default.
- W2113444807 hasConceptScore W2113444807C86339819 @default.
- W2113444807 hasConceptScore W2113444807C94375191 @default.
- W2113444807 hasIssue "2" @default.
- W2113444807 hasLocation W21134448071 @default.
- W2113444807 hasOpenAccess W2113444807 @default.
- W2113444807 hasPrimaryLocation W21134448071 @default.
- W2113444807 hasRelatedWork W1981029600 @default.
- W2113444807 hasRelatedWork W2031344019 @default.
- W2113444807 hasRelatedWork W2062295175 @default.
- W2113444807 hasRelatedWork W2089947806 @default.
- W2113444807 hasRelatedWork W2090775178 @default.
- W2113444807 hasRelatedWork W2113444807 @default.
- W2113444807 hasRelatedWork W2142539551 @default.
- W2113444807 hasRelatedWork W2186864846 @default.
- W2113444807 hasRelatedWork W2914940747 @default.
- W2113444807 hasRelatedWork W374533128 @default.
- W2113444807 hasVolume "49" @default.
- W2113444807 isParatext "false" @default.
- W2113444807 isRetracted "false" @default.
- W2113444807 magId "2113444807" @default.
- W2113444807 workType "article" @default.