Matches in SemOpenAlex for { <https://semopenalex.org/work/W2113453716> ?p ?o ?g. }
- W2113453716 endingPage "15" @default.
- W2113453716 startingPage "1" @default.
- W2113453716 abstract "Abstract Though several models have been developed to describe unconfined swelling of coal exposed to adsorbing fluids such as CH 4 or CO 2 at elevated pressure, the role of stress supported by the solid framework ( i.e. an effective stress in excess of the fluid pressure) has not hitherto been considered in thermodynamic descriptions of the adsorption process. In this paper, we develop a thermodynamic model, based on statistical mechanics theory, for the equilibrium concentration of CO 2 adsorbed by stressed coal matrix material. For unconfined (zero effective stress) conditions, the model describes the change in adsorbed concentration as a combined effect of the changing chemical activity of the fluid and the changing availability of adsorption sites in the nanoporous solid matrix. For an ideal gas and an adsorbate under unconfined conditions, this model reduces to the widely applied Langmuir model. When the solid framework of the coal matrix material in subjected to a general stress state σ ij the adsorption energy of a single molecule is increased by a general stress–strain work term. The effect of this in the adsorption model is that the adsorbed concentration is reduced by several percent to several tens of percent for effective stress magnitudes similar to those expected in situ during (E)CBM production. This prediction was confirmed by a preliminary experiment, performed on a sample of Brzeszcze 364 high volatile bituminous coal at 15 MPa fluid pressure, a temperature of 40 °C, and an effective hydrostatic stress or confining pressure of 1–25 MPa. This showed that the equilibrated adsorption capacity at 1 MPa effective stress of 1.38 mmol·g coal − 1 was reduced by almost 10% at 25 MPa effective stress. Combining our thermodynamic model with poroelasticity, a full constitutive equation is derived, which describes the competitive relation between adsorption-induced swelling strain and poroelastic compression, as a function of adsorbed concentration, fluid pressure and state of stress. Our equations offer a basis for full coupled modelling of the problem of injecting or producing a (single) fluid phase such as CO 2 into or from a coal seam under in situ (E)CBM conditions. Moreover, the model provides a means to estimate the effect of “self-stressing” as a result of adsorption of CO 2 by coal under confined in situ conditions. A first analysis of this effect for coal initially at 25 MPa effective stress, with CO 2 injection at 15 MPa, showed an increase in effective stress to 35–105 MPa, which would lower CO 2 uptake at equilibrium by a total amount of ~ 13–30% compared to conventional adsorption measurements made at 15 MPa CO 2 pressure." @default.
- W2113453716 created "2016-06-24" @default.
- W2113453716 creator A5008733982 @default.
- W2113453716 creator A5039853102 @default.
- W2113453716 creator A5056619151 @default.
- W2113453716 date "2012-04-01" @default.
- W2113453716 modified "2023-09-23" @default.
- W2113453716 title "Effect of 3-D stress state on adsorption of CO2 by coal" @default.
- W2113453716 cites W1964100234 @default.
- W2113453716 cites W1985824961 @default.
- W2113453716 cites W1986113254 @default.
- W2113453716 cites W1986714070 @default.
- W2113453716 cites W1987893978 @default.
- W2113453716 cites W1988967647 @default.
- W2113453716 cites W1990030951 @default.
- W2113453716 cites W1990316238 @default.
- W2113453716 cites W1990662222 @default.
- W2113453716 cites W1990666955 @default.
- W2113453716 cites W1993542321 @default.
- W2113453716 cites W1993590418 @default.
- W2113453716 cites W1995644302 @default.
- W2113453716 cites W1998906056 @default.
- W2113453716 cites W2004063955 @default.
- W2113453716 cites W2007505252 @default.
- W2113453716 cites W2009009320 @default.
- W2113453716 cites W2013602083 @default.
- W2113453716 cites W2015040785 @default.
- W2113453716 cites W2017827695 @default.
- W2113453716 cites W2018713864 @default.
- W2113453716 cites W2018841066 @default.
- W2113453716 cites W2021124219 @default.
- W2113453716 cites W2022056040 @default.
- W2113453716 cites W2023421230 @default.
- W2113453716 cites W2029268427 @default.
- W2113453716 cites W2029603268 @default.
- W2113453716 cites W2029901361 @default.
- W2113453716 cites W2039966522 @default.
- W2113453716 cites W2041872685 @default.
- W2113453716 cites W2042896431 @default.
- W2113453716 cites W2044911500 @default.
- W2113453716 cites W2047457041 @default.
- W2113453716 cites W2049457092 @default.
- W2113453716 cites W2053453269 @default.
- W2113453716 cites W2055072688 @default.
- W2113453716 cites W2056325309 @default.
- W2113453716 cites W2064349440 @default.
- W2113453716 cites W2065316249 @default.
- W2113453716 cites W2067772197 @default.
- W2113453716 cites W2072425504 @default.
- W2113453716 cites W2076648954 @default.
- W2113453716 cites W2077410716 @default.
- W2113453716 cites W2079218153 @default.
- W2113453716 cites W2081910345 @default.
- W2113453716 cites W2095553326 @default.
- W2113453716 cites W2103031599 @default.
- W2113453716 cites W2135831085 @default.
- W2113453716 cites W2135844341 @default.
- W2113453716 cites W2137522419 @default.
- W2113453716 cites W2151839715 @default.
- W2113453716 cites W2161378879 @default.
- W2113453716 cites W2167067677 @default.
- W2113453716 cites W2467498425 @default.
- W2113453716 doi "https://doi.org/10.1016/j.coal.2012.01.001" @default.
- W2113453716 hasPublicationYear "2012" @default.
- W2113453716 type Work @default.
- W2113453716 sameAs 2113453716 @default.
- W2113453716 citedByCount "53" @default.
- W2113453716 countsByYear W21134537162012 @default.
- W2113453716 countsByYear W21134537162013 @default.
- W2113453716 countsByYear W21134537162014 @default.
- W2113453716 countsByYear W21134537162015 @default.
- W2113453716 countsByYear W21134537162016 @default.
- W2113453716 countsByYear W21134537162017 @default.
- W2113453716 countsByYear W21134537162018 @default.
- W2113453716 countsByYear W21134537162019 @default.
- W2113453716 countsByYear W21134537162020 @default.
- W2113453716 countsByYear W21134537162021 @default.
- W2113453716 countsByYear W21134537162022 @default.
- W2113453716 countsByYear W21134537162023 @default.
- W2113453716 crossrefType "journal-article" @default.
- W2113453716 hasAuthorship W2113453716A5008733982 @default.
- W2113453716 hasAuthorship W2113453716A5039853102 @default.
- W2113453716 hasAuthorship W2113453716A5056619151 @default.
- W2113453716 hasConcept C127313418 @default.
- W2113453716 hasConcept C127413603 @default.
- W2113453716 hasConcept C138885662 @default.
- W2113453716 hasConcept C147789679 @default.
- W2113453716 hasConcept C150394285 @default.
- W2113453716 hasConcept C16674752 @default.
- W2113453716 hasConcept C17409809 @default.
- W2113453716 hasConcept C185592680 @default.
- W2113453716 hasConcept C199289684 @default.
- W2113453716 hasConcept C21036866 @default.
- W2113453716 hasConcept C39432304 @default.
- W2113453716 hasConcept C41895202 @default.
- W2113453716 hasConcept C518851703 @default.
- W2113453716 hasConcept C548081761 @default.
- W2113453716 hasConcept C6494504 @default.