Matches in SemOpenAlex for { <https://semopenalex.org/work/W2113460900> ?p ?o ?g. }
- W2113460900 endingPage "1141" @default.
- W2113460900 startingPage "1122" @default.
- W2113460900 abstract "The large landmass of northern Russia has the potential to influence global climate through amplification of climate change. Reconstructing climate in this region over millennial timescales is crucial for understanding the processes that affect the global climate system. Chironomids, preserved in lake sediments, have the potential to produce high resolution, low error, quantitative summer air temperature reconstructions. Canonical correspondence analysis of modern surface sediments from high-latitude lakes, located in northern European Russia and central Siberia, suggests that mean July air temperature is the most significant variable explaining chironomid distribution and abundance. This strong relationship enabled the development of a chironomid-based mean July air temperature-inference model based on 81 lakes and 89 taxa which has a rjack2 = 0.92 and RMSEP = 0.89 °C. Comparison of taxon responses to July temperature between this Russian and existing Norwegian data-sets shows that the temperature optima of individual taxa were between 1 and 3 °C higher in the Russian data regardless of modelling technique. Reconstructions based on fossil assemblages from a Russian tundra lake core (VORK5) using a Norwegian chironomid-based inference model provide mean July air temperature estimates that are 1.0–2.7 °C colder than from the 81-lake Russian model and are also lower than the instrumental record from a nearby meteorological station. The Norwegian model also did not reconstruct decadal-scale fluctuations in temperature seen in the instrumental record. These observations suggest that chironomid-based inference models should only be applied to sediment cores which have similar climate regimes to the geographic area of the training set. In addition a 149 lake, 120 taxa chironomid-based continentality inference model was also developed from the modern Norwegian and Russian training sets. A 2-component WA-PLS model was the minimal adequate model with rjack2 = 0.73 and RMSEP = 9.9 using the Gorczynski continentality index. Comparison of reconstructed continentality indices from the tundra lake, VORK5, show close agreement with local instrumental records over the past 70 years and suggest that the model is reliable. Recent warming in the Arctic has been spatially and seasonally heterogeneous; in many areas warming is more pronounced in the spring and autumn leading to a lengthening of the summer, while summer temperatures have remained relatively stable. A continentality inference model has the potential to detect these seasonal changes in climate." @default.
- W2113460900 created "2016-06-24" @default.
- W2113460900 creator A5026466407 @default.
- W2113460900 creator A5026781552 @default.
- W2113460900 creator A5032137388 @default.
- W2113460900 creator A5033476823 @default.
- W2113460900 creator A5069279979 @default.
- W2113460900 creator A5069677137 @default.
- W2113460900 creator A5081723140 @default.
- W2113460900 creator A5083222525 @default.
- W2113460900 date "2011-05-01" @default.
- W2113460900 modified "2023-10-08" @default.
- W2113460900 title "The distribution and abundance of chironomids in high-latitude Eurasian lakes with respect to temperature and continentality: development and application of new chironomid-based climate-inference models in northern Russia" @default.
- W2113460900 cites W1516236295 @default.
- W2113460900 cites W1526167001 @default.
- W2113460900 cites W1532186856 @default.
- W2113460900 cites W1552343806 @default.
- W2113460900 cites W1578395357 @default.
- W2113460900 cites W1959228824 @default.
- W2113460900 cites W1969580389 @default.
- W2113460900 cites W1972564322 @default.
- W2113460900 cites W1975537078 @default.
- W2113460900 cites W1978658846 @default.
- W2113460900 cites W1979184944 @default.
- W2113460900 cites W1984166840 @default.
- W2113460900 cites W2005115891 @default.
- W2113460900 cites W2020685061 @default.
- W2113460900 cites W2025742812 @default.
- W2113460900 cites W2027723454 @default.
- W2113460900 cites W2028280592 @default.
- W2113460900 cites W2031388394 @default.
- W2113460900 cites W2033831579 @default.
- W2113460900 cites W2036417633 @default.
- W2113460900 cites W2044494938 @default.
- W2113460900 cites W2044861532 @default.
- W2113460900 cites W2050947762 @default.
- W2113460900 cites W2060854568 @default.
- W2113460900 cites W2064933242 @default.
- W2113460900 cites W2070753499 @default.
- W2113460900 cites W2075435443 @default.
- W2113460900 cites W2078377676 @default.
- W2113460900 cites W2079171444 @default.
- W2113460900 cites W2080588282 @default.
- W2113460900 cites W2084377087 @default.
- W2113460900 cites W2089204777 @default.
- W2113460900 cites W2090257527 @default.
- W2113460900 cites W2092833170 @default.
- W2113460900 cites W2095833674 @default.
- W2113460900 cites W2103425624 @default.
- W2113460900 cites W2105886055 @default.
- W2113460900 cites W2112434101 @default.
- W2113460900 cites W2117459312 @default.
- W2113460900 cites W2117475318 @default.
- W2113460900 cites W2123954495 @default.
- W2113460900 cites W2129459964 @default.
- W2113460900 cites W2131366487 @default.
- W2113460900 cites W2133609473 @default.
- W2113460900 cites W2137862791 @default.
- W2113460900 cites W2138171779 @default.
- W2113460900 cites W2157088641 @default.
- W2113460900 cites W2161094102 @default.
- W2113460900 cites W2163238018 @default.
- W2113460900 cites W2164159349 @default.
- W2113460900 cites W2179446719 @default.
- W2113460900 cites W2293957909 @default.
- W2113460900 cites W2329834899 @default.
- W2113460900 cites W2334621326 @default.
- W2113460900 cites W245026612 @default.
- W2113460900 cites W269235668 @default.
- W2113460900 cites W2744483661 @default.
- W2113460900 cites W281291416 @default.
- W2113460900 cites W4243443364 @default.
- W2113460900 cites W4249900816 @default.
- W2113460900 cites W73617308 @default.
- W2113460900 doi "https://doi.org/10.1016/j.quascirev.2011.01.022" @default.
- W2113460900 hasPublicationYear "2011" @default.
- W2113460900 type Work @default.
- W2113460900 sameAs 2113460900 @default.
- W2113460900 citedByCount "79" @default.
- W2113460900 countsByYear W21134609002012 @default.
- W2113460900 countsByYear W21134609002013 @default.
- W2113460900 countsByYear W21134609002014 @default.
- W2113460900 countsByYear W21134609002015 @default.
- W2113460900 countsByYear W21134609002016 @default.
- W2113460900 countsByYear W21134609002017 @default.
- W2113460900 countsByYear W21134609002018 @default.
- W2113460900 countsByYear W21134609002019 @default.
- W2113460900 countsByYear W21134609002020 @default.
- W2113460900 countsByYear W21134609002021 @default.
- W2113460900 countsByYear W21134609002022 @default.
- W2113460900 countsByYear W21134609002023 @default.
- W2113460900 crossrefType "journal-article" @default.
- W2113460900 hasAuthorship W2113460900A5026466407 @default.
- W2113460900 hasAuthorship W2113460900A5026781552 @default.
- W2113460900 hasAuthorship W2113460900A5032137388 @default.
- W2113460900 hasAuthorship W2113460900A5033476823 @default.
- W2113460900 hasAuthorship W2113460900A5069279979 @default.
- W2113460900 hasAuthorship W2113460900A5069677137 @default.