Matches in SemOpenAlex for { <https://semopenalex.org/work/W2113640438> ?p ?o ?g. }
- W2113640438 endingPage "98" @default.
- W2113640438 startingPage "79" @default.
- W2113640438 abstract "Over the past five decades, k-means has become the clustering algorithm of choice in many application domains primarily due to its simplicity, time/space efficiency, and invariance to the ordering of the data points. Unfortunately, the algorithm’s sensitivity to the initial selection of the cluster centers remains to be its most serious drawback. Numerous initialization methods have been proposed to address this drawback. Many of these methods, however, have time complexity superlinear in the number of data points, which makes them impractical for large data sets. On the other hand, linear methods are often random and/or sensitive to the ordering of the data points. These methods are generally unreliable in that the quality of their results is unpredictable. Therefore, it is common practice to perform multiple runs of such methods and take the output of the run that produces the best results. Such a practice, however, greatly increases the computational requirements of the otherwise highly efficient k-means algorithm. In this chapter, we investigate the empirical performance of six linear, deterministic (non-random), and order-invariant k-means initialization methods on a large and diverse collection of data sets from the UCI Machine Learning Repository. The results demonstrate that two relatively unknown hierarchical initialization methods due to Su and Dy outperform the remaining four methods with respect to two objective effectiveness criteria. In addition, a recent method due to Erisoglu et al. performs surprisingly poorly." @default.
- W2113640438 created "2016-06-24" @default.
- W2113640438 creator A5008425872 @default.
- W2113640438 creator A5087779431 @default.
- W2113640438 date "2014-10-17" @default.
- W2113640438 modified "2023-09-23" @default.
- W2113640438 title "Linear, Deterministic, and Order-Invariant Initialization Methods for the K-Means Clustering Algorithm" @default.
- W2113640438 cites W118481696 @default.
- W2113640438 cites W142275858 @default.
- W2113640438 cites W1489991816 @default.
- W2113640438 cites W1493454437 @default.
- W2113640438 cites W1501500081 @default.
- W2113640438 cites W1508853606 @default.
- W2113640438 cites W1559440783 @default.
- W2113640438 cites W1585002319 @default.
- W2113640438 cites W1590311885 @default.
- W2113640438 cites W1596527888 @default.
- W2113640438 cites W1604282482 @default.
- W2113640438 cites W1640718925 @default.
- W2113640438 cites W1973264045 @default.
- W2113640438 cites W1975331922 @default.
- W2113640438 cites W1978573269 @default.
- W2113640438 cites W1980317569 @default.
- W2113640438 cites W1982439848 @default.
- W2113640438 cites W1985059878 @default.
- W2113640438 cites W1988060422 @default.
- W2113640438 cites W1989270503 @default.
- W2113640438 cites W1992419399 @default.
- W2113640438 cites W1996881001 @default.
- W2113640438 cites W1997527287 @default.
- W2113640438 cites W1997713127 @default.
- W2113640438 cites W1999668761 @default.
- W2113640438 cites W2001987339 @default.
- W2113640438 cites W2004549407 @default.
- W2113640438 cites W2006685053 @default.
- W2113640438 cites W2010140249 @default.
- W2113640438 cites W2011430131 @default.
- W2113640438 cites W2017422910 @default.
- W2113640438 cites W2025041020 @default.
- W2113640438 cites W2026789128 @default.
- W2113640438 cites W2029248817 @default.
- W2113640438 cites W2035139756 @default.
- W2113640438 cites W2036477303 @default.
- W2113640438 cites W2047019718 @default.
- W2113640438 cites W2054787086 @default.
- W2113640438 cites W2057536593 @default.
- W2113640438 cites W2059515884 @default.
- W2113640438 cites W2060207914 @default.
- W2113640438 cites W2063257142 @default.
- W2113640438 cites W2064001834 @default.
- W2113640438 cites W2065592694 @default.
- W2113640438 cites W2066965880 @default.
- W2113640438 cites W2069552821 @default.
- W2113640438 cites W2070150264 @default.
- W2113640438 cites W2072131729 @default.
- W2113640438 cites W2073149227 @default.
- W2113640438 cites W2073568237 @default.
- W2113640438 cites W2073849744 @default.
- W2113640438 cites W2075098580 @default.
- W2113640438 cites W2075596649 @default.
- W2113640438 cites W2077442640 @default.
- W2113640438 cites W2080710904 @default.
- W2113640438 cites W2080847832 @default.
- W2113640438 cites W2082662769 @default.
- W2113640438 cites W2086055644 @default.
- W2113640438 cites W2086959852 @default.
- W2113640438 cites W2089040534 @default.
- W2113640438 cites W2091292848 @default.
- W2113640438 cites W2103851285 @default.
- W2113640438 cites W2118735435 @default.
- W2113640438 cites W2122051577 @default.
- W2113640438 cites W2123386615 @default.
- W2113640438 cites W2126337883 @default.
- W2113640438 cites W2132914434 @default.
- W2113640438 cites W2134383396 @default.
- W2113640438 cites W2140405352 @default.
- W2113640438 cites W2144405306 @default.
- W2113640438 cites W2149596792 @default.
- W2113640438 cites W2150271850 @default.
- W2113640438 cites W2150593711 @default.
- W2113640438 cites W2153233077 @default.
- W2113640438 cites W2155687169 @default.
- W2113640438 cites W2160039585 @default.
- W2113640438 cites W2161160262 @default.
- W2113640438 cites W2320797593 @default.
- W2113640438 cites W2599272755 @default.
- W2113640438 cites W2801625290 @default.
- W2113640438 cites W2950437976 @default.
- W2113640438 cites W3083424454 @default.
- W2113640438 cites W3100176132 @default.
- W2113640438 cites W3122140352 @default.
- W2113640438 cites W35739717 @default.
- W2113640438 cites W4230209322 @default.
- W2113640438 cites W596522316 @default.
- W2113640438 cites W78899199 @default.
- W2113640438 doi "https://doi.org/10.1007/978-3-319-09259-1_3" @default.
- W2113640438 hasPublicationYear "2014" @default.
- W2113640438 type Work @default.