Matches in SemOpenAlex for { <https://semopenalex.org/work/W2113647583> ?p ?o ?g. }
- W2113647583 endingPage "483" @default.
- W2113647583 startingPage "475" @default.
- W2113647583 abstract "Our purpose in this study is to develop a parameter optimization technique for the segmentation of suspicious microcalcification clusters in digitized mammograms. In previous work, a computer‐aided diagnosis (CAD) scheme was developed that used local histogram analysis of overlapping subimages and a fuzzy rule‐based classifier to segment individual microcalcifications, and clustering analysis for reducing the number of false positive clusters. The performance of this previous CAD scheme depended on a large number of parameters such as the intervals used to calculate fuzzy membership values and on the combination of membership values used by each decision rule. These parameters were optimized empirically based on the performance of the algorithm on the training set. In order to overcome the limitations of manual training and rule generation, the segmentation algorithm was modified in order to incorporate automatic parameter optimization. For the segmentation of individual microcalcifications, the new algorithm used a neural network with fuzzy‐scaled inputs. The fuzzy‐scaled inputs were created by processing the histogram features with a family of membership functions, the parameters of which were automatically extracted from the distribution of the feature values. The neural network was trained to classify feature vectors as either positive or negative. Individual microcalcifications were segmented from positive subimages. After clustering, another neural network was trained to eliminate false positive clusters. A database of 98 images provided training and testing sets to optimize the parameters and evaluate the CAD scheme, respectively. The performance of the algorithm was evaluated with a FROC analysis. At a sensitivity rate of 93.2%, there was an average of 0.8 false positive clusters per image. The results are very comparable with those taken using our previously published rule‐based method. However, the new algorithm is more suited to generalize its performance on a larger population, depends on two monotonic outputs making its evaluation much easier and can be trained in an automatic way making practical its application on a large database." @default.
- W2113647583 created "2016-06-24" @default.
- W2113647583 creator A5039348485 @default.
- W2113647583 creator A5040192736 @default.
- W2113647583 creator A5045279825 @default.
- W2113647583 date "2002-03-26" @default.
- W2113647583 modified "2023-10-04" @default.
- W2113647583 title "Parameter optimization of a computer-aided diagnosis scheme for the segmentation of microcalcification clusters in mammograms" @default.
- W2113647583 cites W1964048916 @default.
- W2113647583 cites W1967257064 @default.
- W2113647583 cites W1968517472 @default.
- W2113647583 cites W1976363906 @default.
- W2113647583 cites W1978379382 @default.
- W2113647583 cites W1981083147 @default.
- W2113647583 cites W1988264599 @default.
- W2113647583 cites W1995381262 @default.
- W2113647583 cites W1999356868 @default.
- W2113647583 cites W2004037047 @default.
- W2113647583 cites W2035950812 @default.
- W2113647583 cites W2039408393 @default.
- W2113647583 cites W2050383414 @default.
- W2113647583 cites W2059972525 @default.
- W2113647583 cites W2073919649 @default.
- W2113647583 cites W2084656440 @default.
- W2113647583 cites W2086127902 @default.
- W2113647583 cites W2090018374 @default.
- W2113647583 cites W2112525988 @default.
- W2113647583 cites W2118172064 @default.
- W2113647583 cites W2148518080 @default.
- W2113647583 cites W2159619299 @default.
- W2113647583 cites W2325850497 @default.
- W2113647583 doi "https://doi.org/10.1118/1.1460874" @default.
- W2113647583 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11998828" @default.
- W2113647583 hasPublicationYear "2002" @default.
- W2113647583 type Work @default.
- W2113647583 sameAs 2113647583 @default.
- W2113647583 citedByCount "32" @default.
- W2113647583 countsByYear W21136475832012 @default.
- W2113647583 countsByYear W21136475832013 @default.
- W2113647583 countsByYear W21136475832014 @default.
- W2113647583 countsByYear W21136475832015 @default.
- W2113647583 countsByYear W21136475832017 @default.
- W2113647583 crossrefType "journal-article" @default.
- W2113647583 hasAuthorship W2113647583A5039348485 @default.
- W2113647583 hasAuthorship W2113647583A5040192736 @default.
- W2113647583 hasAuthorship W2113647583A5045279825 @default.
- W2113647583 hasConcept C115961682 @default.
- W2113647583 hasConcept C121608353 @default.
- W2113647583 hasConcept C124101348 @default.
- W2113647583 hasConcept C124504099 @default.
- W2113647583 hasConcept C126322002 @default.
- W2113647583 hasConcept C127413603 @default.
- W2113647583 hasConcept C138885662 @default.
- W2113647583 hasConcept C153180895 @default.
- W2113647583 hasConcept C154945302 @default.
- W2113647583 hasConcept C194789388 @default.
- W2113647583 hasConcept C199639397 @default.
- W2113647583 hasConcept C2776401178 @default.
- W2113647583 hasConcept C2779549770 @default.
- W2113647583 hasConcept C2780472235 @default.
- W2113647583 hasConcept C2781129008 @default.
- W2113647583 hasConcept C41008148 @default.
- W2113647583 hasConcept C41895202 @default.
- W2113647583 hasConcept C50644808 @default.
- W2113647583 hasConcept C530470458 @default.
- W2113647583 hasConcept C53533937 @default.
- W2113647583 hasConcept C58166 @default.
- W2113647583 hasConcept C71924100 @default.
- W2113647583 hasConcept C73555534 @default.
- W2113647583 hasConcept C89600930 @default.
- W2113647583 hasConcept C95623464 @default.
- W2113647583 hasConceptScore W2113647583C115961682 @default.
- W2113647583 hasConceptScore W2113647583C121608353 @default.
- W2113647583 hasConceptScore W2113647583C124101348 @default.
- W2113647583 hasConceptScore W2113647583C124504099 @default.
- W2113647583 hasConceptScore W2113647583C126322002 @default.
- W2113647583 hasConceptScore W2113647583C127413603 @default.
- W2113647583 hasConceptScore W2113647583C138885662 @default.
- W2113647583 hasConceptScore W2113647583C153180895 @default.
- W2113647583 hasConceptScore W2113647583C154945302 @default.
- W2113647583 hasConceptScore W2113647583C194789388 @default.
- W2113647583 hasConceptScore W2113647583C199639397 @default.
- W2113647583 hasConceptScore W2113647583C2776401178 @default.
- W2113647583 hasConceptScore W2113647583C2779549770 @default.
- W2113647583 hasConceptScore W2113647583C2780472235 @default.
- W2113647583 hasConceptScore W2113647583C2781129008 @default.
- W2113647583 hasConceptScore W2113647583C41008148 @default.
- W2113647583 hasConceptScore W2113647583C41895202 @default.
- W2113647583 hasConceptScore W2113647583C50644808 @default.
- W2113647583 hasConceptScore W2113647583C530470458 @default.
- W2113647583 hasConceptScore W2113647583C53533937 @default.
- W2113647583 hasConceptScore W2113647583C58166 @default.
- W2113647583 hasConceptScore W2113647583C71924100 @default.
- W2113647583 hasConceptScore W2113647583C73555534 @default.
- W2113647583 hasConceptScore W2113647583C89600930 @default.
- W2113647583 hasConceptScore W2113647583C95623464 @default.
- W2113647583 hasIssue "4" @default.
- W2113647583 hasLocation W21136475831 @default.