Matches in SemOpenAlex for { <https://semopenalex.org/work/W2113700172> ?p ?o ?g. }
- W2113700172 abstract "In this paper, we describe a framework for solving computationally hard, distributed function optimization problems using reinforcement learning techniques. In particular, we model a function optimization problem as an identical payoff game played by a team of reinforcement learning agents. The team performs a stochastic search through the domain space of the parameters of the function. However, current game learning algorithms suffer from significant memory requirement, significant communication overhead and slow convergence. To alleviate these problems, we present novel decentralized and partially decentralized reinforcement learning algorithms for the team. Simulation results are presented for the NP-Hard sensor subset selection problem to show that the agents learn locally optimal parameter values and illustrate the advantages of the proposed algorithms." @default.
- W2113700172 created "2016-06-24" @default.
- W2113700172 creator A5033636115 @default.
- W2113700172 creator A5072472948 @default.
- W2113700172 date "2010-12-01" @default.
- W2113700172 modified "2023-09-26" @default.
- W2113700172 title "Decentralized and Partially Decentralized Reinforcement Learning for Distributed Combinatorial Optimization Problems" @default.
- W2113700172 cites W1500564636 @default.
- W2113700172 cites W1502991072 @default.
- W2113700172 cites W1522567181 @default.
- W2113700172 cites W1538558539 @default.
- W2113700172 cites W1571459273 @default.
- W2113700172 cites W1995654107 @default.
- W2113700172 cites W2023745809 @default.
- W2113700172 cites W2076901266 @default.
- W2113700172 cites W2105934661 @default.
- W2113700172 cites W2106335692 @default.
- W2113700172 cites W2108766162 @default.
- W2113700172 cites W2119420098 @default.
- W2113700172 cites W2144846366 @default.
- W2113700172 cites W2146350180 @default.
- W2113700172 cites W2147714594 @default.
- W2113700172 cites W2152005431 @default.
- W2113700172 cites W2160575156 @default.
- W2113700172 cites W2161389599 @default.
- W2113700172 cites W2169655138 @default.
- W2113700172 cites W2975461012 @default.
- W2113700172 doi "https://doi.org/10.1109/icmla.2010.64" @default.
- W2113700172 hasPublicationYear "2010" @default.
- W2113700172 type Work @default.
- W2113700172 sameAs 2113700172 @default.
- W2113700172 citedByCount "5" @default.
- W2113700172 countsByYear W21137001722012 @default.
- W2113700172 countsByYear W21137001722017 @default.
- W2113700172 crossrefType "proceedings-article" @default.
- W2113700172 hasAuthorship W2113700172A5033636115 @default.
- W2113700172 hasAuthorship W2113700172A5072472948 @default.
- W2113700172 hasConcept C111919701 @default.
- W2113700172 hasConcept C11413529 @default.
- W2113700172 hasConcept C126255220 @default.
- W2113700172 hasConcept C134306372 @default.
- W2113700172 hasConcept C137836250 @default.
- W2113700172 hasConcept C14036430 @default.
- W2113700172 hasConcept C144237770 @default.
- W2113700172 hasConcept C154945302 @default.
- W2113700172 hasConcept C162324750 @default.
- W2113700172 hasConcept C22171661 @default.
- W2113700172 hasConcept C2777303404 @default.
- W2113700172 hasConcept C2778079155 @default.
- W2113700172 hasConcept C2779960059 @default.
- W2113700172 hasConcept C33923547 @default.
- W2113700172 hasConcept C36503486 @default.
- W2113700172 hasConcept C41008148 @default.
- W2113700172 hasConcept C46814582 @default.
- W2113700172 hasConcept C50522688 @default.
- W2113700172 hasConcept C78458016 @default.
- W2113700172 hasConcept C86803240 @default.
- W2113700172 hasConcept C97541855 @default.
- W2113700172 hasConceptScore W2113700172C111919701 @default.
- W2113700172 hasConceptScore W2113700172C11413529 @default.
- W2113700172 hasConceptScore W2113700172C126255220 @default.
- W2113700172 hasConceptScore W2113700172C134306372 @default.
- W2113700172 hasConceptScore W2113700172C137836250 @default.
- W2113700172 hasConceptScore W2113700172C14036430 @default.
- W2113700172 hasConceptScore W2113700172C144237770 @default.
- W2113700172 hasConceptScore W2113700172C154945302 @default.
- W2113700172 hasConceptScore W2113700172C162324750 @default.
- W2113700172 hasConceptScore W2113700172C22171661 @default.
- W2113700172 hasConceptScore W2113700172C2777303404 @default.
- W2113700172 hasConceptScore W2113700172C2778079155 @default.
- W2113700172 hasConceptScore W2113700172C2779960059 @default.
- W2113700172 hasConceptScore W2113700172C33923547 @default.
- W2113700172 hasConceptScore W2113700172C36503486 @default.
- W2113700172 hasConceptScore W2113700172C41008148 @default.
- W2113700172 hasConceptScore W2113700172C46814582 @default.
- W2113700172 hasConceptScore W2113700172C50522688 @default.
- W2113700172 hasConceptScore W2113700172C78458016 @default.
- W2113700172 hasConceptScore W2113700172C86803240 @default.
- W2113700172 hasConceptScore W2113700172C97541855 @default.
- W2113700172 hasLocation W21137001721 @default.
- W2113700172 hasOpenAccess W2113700172 @default.
- W2113700172 hasPrimaryLocation W21137001721 @default.
- W2113700172 hasRelatedWork W1541730457 @default.
- W2113700172 hasRelatedWork W1627437414 @default.
- W2113700172 hasRelatedWork W1801398035 @default.
- W2113700172 hasRelatedWork W2003342825 @default.
- W2113700172 hasRelatedWork W2007668881 @default.
- W2113700172 hasRelatedWork W2011231614 @default.
- W2113700172 hasRelatedWork W2030512383 @default.
- W2113700172 hasRelatedWork W2088812820 @default.
- W2113700172 hasRelatedWork W2089415692 @default.
- W2113700172 hasRelatedWork W2097031964 @default.
- W2113700172 hasRelatedWork W2114876262 @default.
- W2113700172 hasRelatedWork W2115615930 @default.
- W2113700172 hasRelatedWork W2120637341 @default.
- W2113700172 hasRelatedWork W2125631327 @default.
- W2113700172 hasRelatedWork W2136617285 @default.
- W2113700172 hasRelatedWork W2288872327 @default.
- W2113700172 hasRelatedWork W2373283138 @default.
- W2113700172 hasRelatedWork W2397962349 @default.