Matches in SemOpenAlex for { <https://semopenalex.org/work/W2113761410> ?p ?o ?g. }
- W2113761410 endingPage "S55" @default.
- W2113761410 startingPage "S35" @default.
- W2113761410 abstract "Electrical impedance tomography (EIT) is an attractive method for clinically monitoring patients during mechanical ventilation, because it can provide a non-invasive continuous image of pulmonary impedance which indicates the distribution of ventilation. However, most clinical and physiological research in lung EIT is done using older and proprietary algorithms; this is an obstacle to interpretation of EIT images because the reconstructed images are not well characterized. To address this issue, we develop a consensus linear reconstruction algorithm for lung EIT, called GREIT (Graz consensus Reconstruction algorithm for EIT). This paper describes the unified approach to linear image reconstruction developed for GREIT. The framework for the linear reconstruction algorithm consists of (1) detailed finite element models of a representative adult and neonatal thorax, (2) consensus on the performance figures of merit for EIT image reconstruction and (3) a systematic approach to optimize a linear reconstruction matrix to desired performance measures. Consensus figures of merit, in order of importance, are (a) uniform amplitude response, (b) small and uniform position error, (c) small ringing artefacts, (d) uniform resolution, (e) limited shape deformation and (f) high resolution. Such figures of merit must be attained while maintaining small noise amplification and small sensitivity to electrode and boundary movement. This approach represents the consensus of a large and representative group of experts in EIT algorithm design and clinical applications for pulmonary monitoring. All software and data to implement and test the algorithm have been made available under an open source license which allows free research and commercial use." @default.
- W2113761410 created "2016-06-24" @default.
- W2113761410 creator A5011415000 @default.
- W2113761410 creator A5020019860 @default.
- W2113761410 creator A5020541798 @default.
- W2113761410 creator A5032047487 @default.
- W2113761410 creator A5033438097 @default.
- W2113761410 creator A5045871735 @default.
- W2113761410 creator A5048160354 @default.
- W2113761410 creator A5048767855 @default.
- W2113761410 creator A5049003106 @default.
- W2113761410 creator A5049896100 @default.
- W2113761410 creator A5051440687 @default.
- W2113761410 creator A5057750392 @default.
- W2113761410 creator A5058599589 @default.
- W2113761410 creator A5060832545 @default.
- W2113761410 creator A5066771831 @default.
- W2113761410 creator A5076125502 @default.
- W2113761410 creator A5078885733 @default.
- W2113761410 creator A5079036858 @default.
- W2113761410 creator A5091837095 @default.
- W2113761410 date "2009-06-01" @default.
- W2113761410 modified "2023-10-16" @default.
- W2113761410 title "GREIT: a unified approach to 2D linear EIT reconstruction of lung images" @default.
- W2113761410 cites W1968007988 @default.
- W2113761410 cites W1970575467 @default.
- W2113761410 cites W1970881541 @default.
- W2113761410 cites W1975831153 @default.
- W2113761410 cites W1979972895 @default.
- W2113761410 cites W1982338176 @default.
- W2113761410 cites W1995325863 @default.
- W2113761410 cites W2017349683 @default.
- W2113761410 cites W2019404074 @default.
- W2113761410 cites W2024506048 @default.
- W2113761410 cites W2027903388 @default.
- W2113761410 cites W2036178417 @default.
- W2113761410 cites W2040795621 @default.
- W2113761410 cites W2041556066 @default.
- W2113761410 cites W2052625285 @default.
- W2113761410 cites W2054962225 @default.
- W2113761410 cites W2055571910 @default.
- W2113761410 cites W2064694526 @default.
- W2113761410 cites W2073746755 @default.
- W2113761410 cites W2076868292 @default.
- W2113761410 cites W2077204104 @default.
- W2113761410 cites W2082201463 @default.
- W2113761410 cites W2083598195 @default.
- W2113761410 cites W208771079 @default.
- W2113761410 cites W2101836605 @default.
- W2113761410 cites W2103017125 @default.
- W2113761410 cites W2112890043 @default.
- W2113761410 cites W2112908310 @default.
- W2113761410 cites W2135955684 @default.
- W2113761410 cites W2141002303 @default.
- W2113761410 cites W2141177072 @default.
- W2113761410 cites W2166657119 @default.
- W2113761410 cites W2278331350 @default.
- W2113761410 cites W3122482465 @default.
- W2113761410 doi "https://doi.org/10.1088/0967-3334/30/6/s03" @default.
- W2113761410 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19491438" @default.
- W2113761410 hasPublicationYear "2009" @default.
- W2113761410 type Work @default.
- W2113761410 sameAs 2113761410 @default.
- W2113761410 citedByCount "492" @default.
- W2113761410 countsByYear W21137614102012 @default.
- W2113761410 countsByYear W21137614102013 @default.
- W2113761410 countsByYear W21137614102014 @default.
- W2113761410 countsByYear W21137614102015 @default.
- W2113761410 countsByYear W21137614102016 @default.
- W2113761410 countsByYear W21137614102017 @default.
- W2113761410 countsByYear W21137614102018 @default.
- W2113761410 countsByYear W21137614102019 @default.
- W2113761410 countsByYear W21137614102020 @default.
- W2113761410 countsByYear W21137614102021 @default.
- W2113761410 countsByYear W21137614102022 @default.
- W2113761410 countsByYear W21137614102023 @default.
- W2113761410 crossrefType "journal-article" @default.
- W2113761410 hasAuthorship W2113761410A5011415000 @default.
- W2113761410 hasAuthorship W2113761410A5020019860 @default.
- W2113761410 hasAuthorship W2113761410A5020541798 @default.
- W2113761410 hasAuthorship W2113761410A5032047487 @default.
- W2113761410 hasAuthorship W2113761410A5033438097 @default.
- W2113761410 hasAuthorship W2113761410A5045871735 @default.
- W2113761410 hasAuthorship W2113761410A5048160354 @default.
- W2113761410 hasAuthorship W2113761410A5048767855 @default.
- W2113761410 hasAuthorship W2113761410A5049003106 @default.
- W2113761410 hasAuthorship W2113761410A5049896100 @default.
- W2113761410 hasAuthorship W2113761410A5051440687 @default.
- W2113761410 hasAuthorship W2113761410A5057750392 @default.
- W2113761410 hasAuthorship W2113761410A5058599589 @default.
- W2113761410 hasAuthorship W2113761410A5060832545 @default.
- W2113761410 hasAuthorship W2113761410A5066771831 @default.
- W2113761410 hasAuthorship W2113761410A5076125502 @default.
- W2113761410 hasAuthorship W2113761410A5078885733 @default.
- W2113761410 hasAuthorship W2113761410A5079036858 @default.
- W2113761410 hasAuthorship W2113761410A5091837095 @default.
- W2113761410 hasBestOaLocation W21137614102 @default.
- W2113761410 hasConcept C11413529 @default.