Matches in SemOpenAlex for { <https://semopenalex.org/work/W2113767070> ?p ?o ?g. }
- W2113767070 abstract "Abstract Background Systematic mutagenesis studies have shown that only a few interface residues termed hot spots contribute significantly to the binding free energy of protein-protein interactions. Therefore, hot spots prediction becomes increasingly important for well understanding the essence of proteins interactions and helping narrow down the search space for drug design. Currently many computational methods have been developed by proposing different features. However comparative assessment of these features and furthermore effective and accurate methods are still in pressing need. Results In this study, we first comprehensively collect the features to discriminate hot spots and non-hot spots and analyze their distributions. We find that hot spots have lower relASA and larger relative change in ASA, suggesting hot spots tend to be protected from bulk solvent. In addition, hot spots have more contacts including hydrogen bonds, salt bridges, and atomic contacts, which favor complexes formation. Interestingly, we find that conservation score and sequence entropy are not significantly different between hot spots and non-hot spots in Ab+ dataset (all complexes). While in Ab- dataset (antigen-antibody complexes are excluded), there are significant differences in two features between hot pots and non-hot spots. Secondly, we explore the predictive ability for each feature and the combinations of features by support vector machines (SVMs). The results indicate that sequence-based feature outperforms other combinations of features with reasonable accuracy, with a precision of 0.69, a recall of 0.68, an F1 score of 0.68, and an AUC of 0.68 on independent test set. Compared with other machine learning methods and two energy-based approaches, our approach achieves the best performance. Moreover, we demonstrate the applicability of our method to predict hot spots of two protein complexes. Conclusion Experimental results show that support vector machine classifiers are quite effective in predicting hot spots based on sequence features. Hot spots cannot be fully predicted through simple analysis based on physicochemical characteristics, but there is reason to believe that integration of features and machine learning methods can remarkably improve the predictive performance for hot spots." @default.
- W2113767070 created "2016-06-24" @default.
- W2113767070 creator A5008633913 @default.
- W2113767070 creator A5019041750 @default.
- W2113767070 creator A5032861309 @default.
- W2113767070 creator A5033355913 @default.
- W2113767070 creator A5047872236 @default.
- W2113767070 creator A5066102428 @default.
- W2113767070 creator A5087166824 @default.
- W2113767070 date "2011-07-29" @default.
- W2113767070 modified "2023-10-12" @default.
- W2113767070 title "Rigorous assessment and integration of the sequence and structure based features to predict hot spots" @default.
- W2113767070 cites W1483099488 @default.
- W2113767070 cites W1519266993 @default.
- W2113767070 cites W1532597512 @default.
- W2113767070 cites W1547738547 @default.
- W2113767070 cites W1964507057 @default.
- W2113767070 cites W1967293793 @default.
- W2113767070 cites W1979366468 @default.
- W2113767070 cites W1984936504 @default.
- W2113767070 cites W1985222378 @default.
- W2113767070 cites W1999390565 @default.
- W2113767070 cites W2009664421 @default.
- W2113767070 cites W2010122910 @default.
- W2113767070 cites W2013988051 @default.
- W2113767070 cites W2014731953 @default.
- W2113767070 cites W2015357376 @default.
- W2113767070 cites W2016087379 @default.
- W2113767070 cites W2021259459 @default.
- W2113767070 cites W2025091441 @default.
- W2113767070 cites W2025120281 @default.
- W2113767070 cites W2026370952 @default.
- W2113767070 cites W2030154259 @default.
- W2113767070 cites W2031772330 @default.
- W2113767070 cites W2033855745 @default.
- W2113767070 cites W2040074453 @default.
- W2113767070 cites W2043338013 @default.
- W2113767070 cites W2043538886 @default.
- W2113767070 cites W2043699100 @default.
- W2113767070 cites W2046544104 @default.
- W2113767070 cites W2051591490 @default.
- W2113767070 cites W2051640364 @default.
- W2113767070 cites W2051710717 @default.
- W2113767070 cites W2058527555 @default.
- W2113767070 cites W2060059149 @default.
- W2113767070 cites W2062119305 @default.
- W2113767070 cites W2062695451 @default.
- W2113767070 cites W2066435166 @default.
- W2113767070 cites W2069663555 @default.
- W2113767070 cites W2072015681 @default.
- W2113767070 cites W2075770210 @default.
- W2113767070 cites W2084949662 @default.
- W2113767070 cites W2085992142 @default.
- W2113767070 cites W2088038235 @default.
- W2113767070 cites W2091565674 @default.
- W2113767070 cites W2092387745 @default.
- W2113767070 cites W2094148990 @default.
- W2113767070 cites W2095805596 @default.
- W2113767070 cites W2097697746 @default.
- W2113767070 cites W2098888753 @default.
- W2113767070 cites W2100890997 @default.
- W2113767070 cites W2103485392 @default.
- W2113767070 cites W2107757325 @default.
- W2113767070 cites W2115156437 @default.
- W2113767070 cites W2115410056 @default.
- W2113767070 cites W2116099439 @default.
- W2113767070 cites W2118737745 @default.
- W2113767070 cites W2120770540 @default.
- W2113767070 cites W2123009167 @default.
- W2113767070 cites W2127495252 @default.
- W2113767070 cites W2128276810 @default.
- W2113767070 cites W2130186818 @default.
- W2113767070 cites W2130479394 @default.
- W2113767070 cites W2132717858 @default.
- W2113767070 cites W2132926880 @default.
- W2113767070 cites W2134348941 @default.
- W2113767070 cites W2136206140 @default.
- W2113767070 cites W2136224545 @default.
- W2113767070 cites W2136525667 @default.
- W2113767070 cites W2139262886 @default.
- W2113767070 cites W2141624700 @default.
- W2113767070 cites W2150192011 @default.
- W2113767070 cites W2150381702 @default.
- W2113767070 cites W2152521138 @default.
- W2113767070 cites W2153153865 @default.
- W2113767070 cites W2154734750 @default.
- W2113767070 cites W2157735020 @default.
- W2113767070 cites W2157892451 @default.
- W2113767070 cites W2158714788 @default.
- W2113767070 cites W2158919479 @default.
- W2113767070 cites W2159689273 @default.
- W2113767070 cites W2160690759 @default.
- W2113767070 cites W2162402626 @default.
- W2113767070 cites W2163352757 @default.
- W2113767070 cites W2165214884 @default.
- W2113767070 cites W2166233246 @default.
- W2113767070 cites W2168164063 @default.
- W2113767070 cites W2169800047 @default.
- W2113767070 cites W4230674625 @default.
- W2113767070 cites W4239198058 @default.