Matches in SemOpenAlex for { <https://semopenalex.org/work/W2113802198> ?p ?o ?g. }
- W2113802198 endingPage "54" @default.
- W2113802198 startingPage "54" @default.
- W2113802198 abstract "There is a rising public and political demand for prospective cancer cluster monitoring. But there is little empirical evidence on the performance of established cluster detection tests under conditions of small and heterogeneous sample sizes and varying spatial scales, such as are the case for most existing population-based cancer registries. Therefore this simulation study aims to evaluate different cluster detection methods, implemented in the open soure environment R, in their ability to identify clusters of lung cancer using real-life data from an epidemiological cancer registry in Germany. Risk surfaces were constructed with two different spatial cluster types, representing a relative risk of RR = 2.0 or of RR = 4.0, in relation to the overall background incidence of lung cancer, separately for men and women. Lung cancer cases were sampled from this risk surface as geocodes using an inhomogeneous Poisson process. The realisations of the cancer cases were analysed within small spatial (census tracts, N = 1983) and within aggregated large spatial scales (communities, N = 78). Subsequently, they were submitted to the cluster detection methods. The test accuracy for cluster location was determined in terms of detection rates (DR), false-positive (FP) rates and positive predictive values. The Bayesian smoothing models were evaluated using ROC curves. With moderate risk increase (RR = 2.0), local cluster tests showed better DR (for both spatial aggregation scales > 0.90) and lower FP rates (both < 0.05) than the Bayesian smoothing methods. When the cluster RR was raised four-fold, the local cluster tests showed better DR with lower FPs only for the small spatial scale. At a large spatial scale, the Bayesian smoothing methods, especially those implementing a spatial neighbourhood, showed a substantially lower FP rate than the cluster tests. However, the risk increases at this scale were mostly diluted by data aggregation. High resolution spatial scales seem more appropriate as data base for cancer cluster testing and monitoring than the commonly used aggregated scales. We suggest the development of a two-stage approach that combines methods with high detection rates as a first-line screening with methods of higher predictive ability at the second stage." @default.
- W2113802198 created "2016-06-24" @default.
- W2113802198 creator A5043978514 @default.
- W2113802198 creator A5047562697 @default.
- W2113802198 creator A5054607061 @default.
- W2113802198 creator A5071984031 @default.
- W2113802198 creator A5080551664 @default.
- W2113802198 date "2013-01-01" @default.
- W2113802198 modified "2023-10-14" @default.
- W2113802198 title "Detecting cancer clusters in a regional population with local cluster tests and Bayesian smoothing methods: a simulation study" @default.
- W2113802198 cites W1512358884 @default.
- W2113802198 cites W1517555081 @default.
- W2113802198 cites W1878044492 @default.
- W2113802198 cites W1987043257 @default.
- W2113802198 cites W1997547924 @default.
- W2113802198 cites W2002110589 @default.
- W2113802198 cites W2002151188 @default.
- W2113802198 cites W2004014822 @default.
- W2113802198 cites W2005238938 @default.
- W2113802198 cites W2018468713 @default.
- W2113802198 cites W2027403579 @default.
- W2113802198 cites W2033764818 @default.
- W2113802198 cites W2061489269 @default.
- W2113802198 cites W2084391800 @default.
- W2113802198 cites W2087558243 @default.
- W2113802198 cites W2088049372 @default.
- W2113802198 cites W2098506723 @default.
- W2113802198 cites W2106207556 @default.
- W2113802198 cites W2107190551 @default.
- W2113802198 cites W2125684519 @default.
- W2113802198 cites W2135141104 @default.
- W2113802198 cites W2138235384 @default.
- W2113802198 cites W2144203096 @default.
- W2113802198 cites W2145076372 @default.
- W2113802198 cites W2155489687 @default.
- W2113802198 cites W2159083449 @default.
- W2113802198 cites W2160783346 @default.
- W2113802198 cites W2162787520 @default.
- W2113802198 cites W2170712385 @default.
- W2113802198 doi "https://doi.org/10.1186/1476-072x-12-54" @default.
- W2113802198 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3878948" @default.
- W2113802198 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24314148" @default.
- W2113802198 hasPublicationYear "2013" @default.
- W2113802198 type Work @default.
- W2113802198 sameAs 2113802198 @default.
- W2113802198 citedByCount "9" @default.
- W2113802198 countsByYear W21138021982014 @default.
- W2113802198 countsByYear W21138021982015 @default.
- W2113802198 countsByYear W21138021982016 @default.
- W2113802198 countsByYear W21138021982018 @default.
- W2113802198 countsByYear W21138021982019 @default.
- W2113802198 countsByYear W21138021982021 @default.
- W2113802198 crossrefType "journal-article" @default.
- W2113802198 hasAuthorship W2113802198A5043978514 @default.
- W2113802198 hasAuthorship W2113802198A5047562697 @default.
- W2113802198 hasAuthorship W2113802198A5054607061 @default.
- W2113802198 hasAuthorship W2113802198A5071984031 @default.
- W2113802198 hasAuthorship W2113802198A5080551664 @default.
- W2113802198 hasBestOaLocation W21138021981 @default.
- W2113802198 hasConcept C100906024 @default.
- W2113802198 hasConcept C105795698 @default.
- W2113802198 hasConcept C107673813 @default.
- W2113802198 hasConcept C119043178 @default.
- W2113802198 hasConcept C121608353 @default.
- W2113802198 hasConcept C126322002 @default.
- W2113802198 hasConcept C149782125 @default.
- W2113802198 hasConcept C164866538 @default.
- W2113802198 hasConcept C199360897 @default.
- W2113802198 hasConcept C205649164 @default.
- W2113802198 hasConcept C2778527826 @default.
- W2113802198 hasConcept C2908647359 @default.
- W2113802198 hasConcept C33923547 @default.
- W2113802198 hasConcept C3770464 @default.
- W2113802198 hasConcept C41008148 @default.
- W2113802198 hasConcept C44249647 @default.
- W2113802198 hasConcept C71924100 @default.
- W2113802198 hasConcept C82789193 @default.
- W2113802198 hasConcept C99454951 @default.
- W2113802198 hasConceptScore W2113802198C100906024 @default.
- W2113802198 hasConceptScore W2113802198C105795698 @default.
- W2113802198 hasConceptScore W2113802198C107673813 @default.
- W2113802198 hasConceptScore W2113802198C119043178 @default.
- W2113802198 hasConceptScore W2113802198C121608353 @default.
- W2113802198 hasConceptScore W2113802198C126322002 @default.
- W2113802198 hasConceptScore W2113802198C149782125 @default.
- W2113802198 hasConceptScore W2113802198C164866538 @default.
- W2113802198 hasConceptScore W2113802198C199360897 @default.
- W2113802198 hasConceptScore W2113802198C205649164 @default.
- W2113802198 hasConceptScore W2113802198C2778527826 @default.
- W2113802198 hasConceptScore W2113802198C2908647359 @default.
- W2113802198 hasConceptScore W2113802198C33923547 @default.
- W2113802198 hasConceptScore W2113802198C3770464 @default.
- W2113802198 hasConceptScore W2113802198C41008148 @default.
- W2113802198 hasConceptScore W2113802198C44249647 @default.
- W2113802198 hasConceptScore W2113802198C71924100 @default.
- W2113802198 hasConceptScore W2113802198C82789193 @default.
- W2113802198 hasConceptScore W2113802198C99454951 @default.
- W2113802198 hasIssue "1" @default.