Matches in SemOpenAlex for { <https://semopenalex.org/work/W2113993151> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2113993151 abstract "A numerical time-domain method is developed to simulate large-amplitude motions of two-dimensional floating bodies in steep waves. The method employs an integral relation derived from Green's second identity and a discretization scheme of centrally located collocation points on linear boundary segments for solution of the full non-linear potential flow problem. Propagating unsteady waves are simulated by imposing an Airy wave potential as a source of excitation on a hypothetical vertical boundary of a rectangular fluid domain. Solutions of linearized wave-propagation problems are in very good agreement with analytical solutions. For the non-linear problem, an Eulerian description of the free surface is used in which vertical movements of the collocation points on the free surface are followed. Smoothing schemes in space and time at the upstream boundary, intermittent smoothing of the free surface and adaptation of a numerical radiation condition permit modelling of very steep progressing waves over 20 wave periods. Numerical experiments reveal insignificant degeneration of the solution resulting from the embodied techniques. The effectiveness of the method is further illustrated by its application to a study of steep waves interacting with vertical walls. Comparison with experimental and analytical results demonstrates the capability of the method in accomplishing non-linear steady state solutions with very good quality of agreement with experimental data. -- In the study of behaviour of floating bodies in steep waves, numerical instability leads to failure of the simulation scheme unless special care is taken with regard to the discretization and treatment of the coupled force-motion relation. The motion of the body with respect to the free surface may result in large variations of the spatial grid sizes in the vicinity of the body and the free surface intersection, which results in destabilizing force effects through the computation of the linear dynamic pressure term (dϕ/dt). These difficulties are resolved by means of an appropriate spatial regridding scheme, and by employing a central difference rule for computation of the dϕ/dt term at the corrector level of the adopted Adams-Bashforth-Moulton rule in the time-integration scheme and by utilizing explicit rules for integration of the equations of motion. A number of computations simulating motions of a rectangular floating body in different situations provides evidence of the efficacy of the algorithm. The presented results contain large roll and heave motions as well as drifting behaviour of a completely unrestrained body. -- A complementary experimental study is also described, in which a rectangular body of rounded-off corners restricted from swaying was subjected to wave excitations inside a channel. Comparison of experimental and computational results shows in general very good agreement over the entire range of the tested conditions, inclusive of resonant behaviour in heave and moderately large roll motions. For this latter behaviour, accounting for viscous effects by means of a semi-empirical procedure improves the correlation significantly." @default.
- W2113993151 created "2016-06-24" @default.
- W2113993151 creator A5061602273 @default.
- W2113993151 date "1988-01-01" @default.
- W2113993151 modified "2023-09-26" @default.
- W2113993151 title "A numerical method for two-dimensional studies of large amplitude motions of floating bodies in steep waves" @default.
- W2113993151 hasPublicationYear "1988" @default.
- W2113993151 type Work @default.
- W2113993151 sameAs 2113993151 @default.
- W2113993151 citedByCount "0" @default.
- W2113993151 crossrefType "dissertation" @default.
- W2113993151 hasAuthorship W2113993151A5061602273 @default.
- W2113993151 hasConcept C105795698 @default.
- W2113993151 hasConcept C120665830 @default.
- W2113993151 hasConcept C121332964 @default.
- W2113993151 hasConcept C127313418 @default.
- W2113993151 hasConcept C131043120 @default.
- W2113993151 hasConcept C134306372 @default.
- W2113993151 hasConcept C171889981 @default.
- W2113993151 hasConcept C180205008 @default.
- W2113993151 hasConcept C33923547 @default.
- W2113993151 hasConcept C3770464 @default.
- W2113993151 hasConcept C57879066 @default.
- W2113993151 hasConcept C62354387 @default.
- W2113993151 hasConcept C62649853 @default.
- W2113993151 hasConcept C73000952 @default.
- W2113993151 hasConcept C74650414 @default.
- W2113993151 hasConcept C80023036 @default.
- W2113993151 hasConceptScore W2113993151C105795698 @default.
- W2113993151 hasConceptScore W2113993151C120665830 @default.
- W2113993151 hasConceptScore W2113993151C121332964 @default.
- W2113993151 hasConceptScore W2113993151C127313418 @default.
- W2113993151 hasConceptScore W2113993151C131043120 @default.
- W2113993151 hasConceptScore W2113993151C134306372 @default.
- W2113993151 hasConceptScore W2113993151C171889981 @default.
- W2113993151 hasConceptScore W2113993151C180205008 @default.
- W2113993151 hasConceptScore W2113993151C33923547 @default.
- W2113993151 hasConceptScore W2113993151C3770464 @default.
- W2113993151 hasConceptScore W2113993151C57879066 @default.
- W2113993151 hasConceptScore W2113993151C62354387 @default.
- W2113993151 hasConceptScore W2113993151C62649853 @default.
- W2113993151 hasConceptScore W2113993151C73000952 @default.
- W2113993151 hasConceptScore W2113993151C74650414 @default.
- W2113993151 hasConceptScore W2113993151C80023036 @default.
- W2113993151 hasLocation W21139931511 @default.
- W2113993151 hasOpenAccess W2113993151 @default.
- W2113993151 hasPrimaryLocation W21139931511 @default.
- W2113993151 hasRelatedWork W1979867624 @default.
- W2113993151 hasRelatedWork W1980232718 @default.
- W2113993151 hasRelatedWork W1989097561 @default.
- W2113993151 hasRelatedWork W2020632997 @default.
- W2113993151 hasRelatedWork W2048532267 @default.
- W2113993151 hasRelatedWork W2051846395 @default.
- W2113993151 hasRelatedWork W2121329763 @default.
- W2113993151 hasRelatedWork W2136552473 @default.
- W2113993151 hasRelatedWork W2166360503 @default.
- W2113993151 hasRelatedWork W2223686793 @default.
- W2113993151 hasRelatedWork W2332255945 @default.
- W2113993151 hasRelatedWork W2387166151 @default.
- W2113993151 hasRelatedWork W2507810769 @default.
- W2113993151 hasRelatedWork W284432934 @default.
- W2113993151 hasRelatedWork W2992398135 @default.
- W2113993151 hasRelatedWork W3033426905 @default.
- W2113993151 hasRelatedWork W3138590250 @default.
- W2113993151 hasRelatedWork W574553624 @default.
- W2113993151 hasRelatedWork W78625401 @default.
- W2113993151 hasRelatedWork W828215299 @default.
- W2113993151 isParatext "false" @default.
- W2113993151 isRetracted "false" @default.
- W2113993151 magId "2113993151" @default.
- W2113993151 workType "dissertation" @default.