Matches in SemOpenAlex for { <https://semopenalex.org/work/W2114062456> ?p ?o ?g. }
- W2114062456 endingPage "257" @default.
- W2114062456 startingPage "245" @default.
- W2114062456 abstract "In marketing analytics applications in OR, the modeler often faces the problem of selecting key variables from a large number of possibilities. For example, SKU level retail store sales are affected by inter and intra category effects which potentially need to be considered when deciding on promotional strategy and producing operational forecasts. But no research has yet put this well accepted concept into forecasting practice: an obvious obstacle is the ultra-high dimensionality of the variable space. This paper develops a four steps methodological framework to overcome the problem. It is illustrated by investigating the value of both intra- and inter-category SKU level promotional information in improving forecast accuracy. The method consists of the identification of potentially influential categories, the building of the explanatory variable space, variable selection and model estimation by a multistage LASSO regression, and the use of a rolling scheme to generate forecasts. The success of this new method for dealing with high dimensionality is demonstrated by improvements in forecasting accuracy compared to alternative methods of simplifying the variable space. The empirical results show that models integrating more information perform significantly better than the baseline model when using the proposed methodology framework. In general, we can improve the forecasting accuracy by 12.6 percent over the model using only the SKU's own predictors. But of the improvements achieved, 95 percent of it comes from the intra-category information, and only 5 percent from the inter-category information. The substantive marketing results also have implications for promotional category management." @default.
- W2114062456 created "2016-06-24" @default.
- W2114062456 creator A5022868153 @default.
- W2114062456 creator A5056841014 @default.
- W2114062456 creator A5087651522 @default.
- W2114062456 date "2016-02-01" @default.
- W2114062456 modified "2023-10-15" @default.
- W2114062456 title "Demand forecasting with high dimensional data: The case of SKU retail sales forecasting with intra- and inter-category promotional information" @default.
- W2114062456 cites W1702784741 @default.
- W2114062456 cites W1975498952 @default.
- W2114062456 cites W1975900269 @default.
- W2114062456 cites W1981144978 @default.
- W2114062456 cites W1990915801 @default.
- W2114062456 cites W1991135386 @default.
- W2114062456 cites W1992880712 @default.
- W2114062456 cites W1999389879 @default.
- W2114062456 cites W2002635374 @default.
- W2114062456 cites W2003859567 @default.
- W2114062456 cites W2011206540 @default.
- W2114062456 cites W2015883852 @default.
- W2114062456 cites W2016210396 @default.
- W2114062456 cites W2018589795 @default.
- W2114062456 cites W2019231125 @default.
- W2114062456 cites W2027185321 @default.
- W2114062456 cites W2032180816 @default.
- W2114062456 cites W2037134354 @default.
- W2114062456 cites W2038849095 @default.
- W2114062456 cites W2040640338 @default.
- W2114062456 cites W2052847753 @default.
- W2114062456 cites W2063251682 @default.
- W2114062456 cites W2063871438 @default.
- W2114062456 cites W2063978378 @default.
- W2114062456 cites W2072375384 @default.
- W2114062456 cites W2074732447 @default.
- W2114062456 cites W2076504883 @default.
- W2114062456 cites W2079563517 @default.
- W2114062456 cites W2087040302 @default.
- W2114062456 cites W2094515728 @default.
- W2114062456 cites W2097376429 @default.
- W2114062456 cites W2106100775 @default.
- W2114062456 cites W2107393893 @default.
- W2114062456 cites W2111454936 @default.
- W2114062456 cites W2112645123 @default.
- W2114062456 cites W2115729714 @default.
- W2114062456 cites W2118418963 @default.
- W2114062456 cites W2119862467 @default.
- W2114062456 cites W2120641488 @default.
- W2114062456 cites W2122825543 @default.
- W2114062456 cites W2132809790 @default.
- W2114062456 cites W2133566740 @default.
- W2114062456 cites W2134182462 @default.
- W2114062456 cites W2147028502 @default.
- W2114062456 cites W2153734407 @default.
- W2114062456 cites W2154560360 @default.
- W2114062456 cites W2159613688 @default.
- W2114062456 cites W2161903420 @default.
- W2114062456 cites W2162174678 @default.
- W2114062456 cites W2163205765 @default.
- W2114062456 cites W2165826862 @default.
- W2114062456 cites W2176007373 @default.
- W2114062456 cites W2239905962 @default.
- W2114062456 cites W3121328226 @default.
- W2114062456 cites W4230841866 @default.
- W2114062456 cites W4238344355 @default.
- W2114062456 cites W4243372546 @default.
- W2114062456 cites W4243880674 @default.
- W2114062456 cites W4254434337 @default.
- W2114062456 cites W4255894397 @default.
- W2114062456 doi "https://doi.org/10.1016/j.ejor.2015.08.029" @default.
- W2114062456 hasPublicationYear "2016" @default.
- W2114062456 type Work @default.
- W2114062456 sameAs 2114062456 @default.
- W2114062456 citedByCount "111" @default.
- W2114062456 countsByYear W21140624562013 @default.
- W2114062456 countsByYear W21140624562016 @default.
- W2114062456 countsByYear W21140624562017 @default.
- W2114062456 countsByYear W21140624562018 @default.
- W2114062456 countsByYear W21140624562019 @default.
- W2114062456 countsByYear W21140624562020 @default.
- W2114062456 countsByYear W21140624562021 @default.
- W2114062456 countsByYear W21140624562022 @default.
- W2114062456 countsByYear W21140624562023 @default.
- W2114062456 crossrefType "journal-article" @default.
- W2114062456 hasAuthorship W2114062456A5022868153 @default.
- W2114062456 hasAuthorship W2114062456A5056841014 @default.
- W2114062456 hasAuthorship W2114062456A5087651522 @default.
- W2114062456 hasBestOaLocation W21140624562 @default.
- W2114062456 hasConcept C111030470 @default.
- W2114062456 hasConcept C119857082 @default.
- W2114062456 hasConcept C124101348 @default.
- W2114062456 hasConcept C134306372 @default.
- W2114062456 hasConcept C136764020 @default.
- W2114062456 hasConcept C148483581 @default.
- W2114062456 hasConcept C149782125 @default.
- W2114062456 hasConcept C182365436 @default.
- W2114062456 hasConcept C193809577 @default.
- W2114062456 hasConcept C33923547 @default.
- W2114062456 hasConcept C37616216 @default.