Matches in SemOpenAlex for { <https://semopenalex.org/work/W2114121420> ?p ?o ?g. }
- W2114121420 endingPage "649" @default.
- W2114121420 startingPage "635" @default.
- W2114121420 abstract "This the user's manual for SHARE version 2. SHARE [G. Torrieri, S. Steinke, W. Broniowski, W. Florkowski, J. Letessier, J. Rafelski, Comput. Phys. Comm. 167 (2005) 229] (Statistical Hadronization with Resonances) is a collection of programs designed for the statistical analysis of particle production in relativistic heavy-ion collisions. While the structure of the program remains similar to v1.x, v2 provides several new features such as evaluation of statistical fluctuations of particle yields, and a greater versatility, in particular regarding decay feed-down and input/output structure. This article describes all the new features, with emphasis on statistical fluctuations. Title of program:SHAREv2 Catalogue identifier:ADVD_v2_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADVD_v2_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer:PC, Pentium III, 512 MB RAM not hardware dependent Operating system:Linux: RedHat 6.1, 7.2, FEDORA, etc. not system dependent Programming language:FORTRAN77 Size of the package:167 KB directory, without libraries (see http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/minmain.html, http://wwwasd.web.cern.ch/wwwasd/cernlib.html for details on library requirements) Number of lines in distributed program, including test data, etc.:26 101 Number of bytes in distributed program, including test data, etc.:170 346 Distribution format:tar.gzip file Computer:Any computer with an f77 compiler Nature of the physical problem:Event-by-event fluctuations have been recognized to be the physical observable capable to constrain particle production models. Therefore, consideration of event-by-event fluctuations is required for a decisive falsification or constraining of (variants of) particle production models based on (grand-, micro-) canonical statistical mechanics phase space, the so called statistical hadronization models (SHM). As in the case of particle yields, to properly compare model calculations to data it is necessary to consistently take into account resonance decays. However, event-by-event fluctuations are more sensitive than particle yields to experimental acceptance issues, and a range of techniques needs to be implemented to extract ‘physical’ fluctuations from an experimental event-by-event measurement. Method of solving the problem:The techniques used within the SHARE suite of programs [G. Torrieri, S. Steinke, W. Broniowski, W. Florkowski, J. Letessier, J. Rafelski, Comput. Phys. Comm. 167 (2005) 229; SHAREv1] are updated and extended to fluctuations. A full particle data-table, decay tree, and set of experimental feed-down coefficients are provided. Unlike SHAREv1.x, experimental acceptance feed-down coefficients can be entered for any resonance decay. SHAREv2 can calculate yields, fluctuations, and bulk properties of the fireball from provided thermal parameters; alternatively, parameters can be obtained from fits to experimental data, via the MINUIT fitting algorithm [F. James, M. Roos, Comput. Phys. Comm. 10 (1975) 343]. Fits can also be analyzed for significance, parameter and data point sensitivity. Averages and fluctuations at freeze-out of both the stable particles and the hadronic resonances are set according to a statistical prescription, calculated via a series of Bessel functions, using CERN library programs. We also have the option of including finite particle widths of the resonances. A χ2 minimization algorithm, also from the CERN library programs, is used to perform and analyze the fit. Please see SHAREv1 for more details on these. Purpose:The vast amount of high quality soft hadron production data, from experiments running at the SPS, RHIC, in past at the AGS, and in the near future at the LHC, offers the opportunity for statistical particle production model falsification. This task has turned out to be difficult when considering solely particle yields addressed in the context of SHAREv1.x. For this reason physical conditions at freeze-out remain contested. Inclusion in the analysis of event-by-event fluctuations appears to resolve this issue. Similarly, a thorough analysis including both fluctuations and average multiplicities gives a way to explore the presence and strength of interactions following hadronization (when hadrons form), ending with thermal freeze-out (when all interactions cease). SHAREv2 with fluctuations will also help determine which statistical ensemble (if any), e.g., canonical or grand-canonical, is more physically appropriate for analyzing a given system. Together with resonances, fluctuations can also be used for a direct estimate of the extent the system re-interacts between chemical and thermal freeze-out. We hope and expect that SHAREv2 will contribute to decide if any of the statistical hadronization model variants has a genuine physical connection to hadron particle production. Computation time survey:We encounter, in the FORTRAN version computation, times up to seconds for evaluation of particle yields. These rise by up to a factor of 300 in the process of minimization and a further factor of a few when χ2/NDoF profiles and contours with chemical non-equilibrium are requested. Fluctuations:In addition to particle yields, ratios and bulk quantities SHAREv2 can calculate, fit and analyze statistical fluctuations of particles and particle ratios Decays:SHAREv2 has the flexibility to account for any experimental method of allowing for decay feed-downs to the particle yields Charm flavor:Charmed particles have been added to the decay tree, allowing as an option study of statistical hadronization of J/ψ, χc, Dc, etc. Quark chemistry:Chemical non-equilibrium yields for both u and d flavors, as opposed to generically light quarks q, are considered; η–η′ mixing, etc., are properly dealt with, and chemical non-equilibrium can be studied for each flavor separately Misc:Many new commands and features have been introduced and added to the basic user interface. For example, it is possible to study combinations of particles and their ratios. It is also possible to combine all the input files into one file. SHARE compatibility and manual:This write-up is an update and extension of SHAREv1. The user should consult SHAREv1 regarding the principles of user interface and for all particle yield related physics and program instructions, other than the parameter additions and minor changes described here. SHAREv2 is downward compatible for the changes of the user interface, offering the user of SHAREv1 a computer generated revised input files compatible with SHAREv2." @default.
- W2114121420 created "2016-06-24" @default.
- W2114121420 creator A5007391724 @default.
- W2114121420 creator A5014436292 @default.
- W2114121420 creator A5050145746 @default.
- W2114121420 creator A5057793883 @default.
- W2114121420 date "2006-11-01" @default.
- W2114121420 modified "2023-10-14" @default.
- W2114121420 title "SHAREv2: fluctuations and a comprehensive treatment of decay feed-down" @default.
- W2114121420 cites W1533761389 @default.
- W2114121420 cites W1541448464 @default.
- W2114121420 cites W1615678074 @default.
- W2114121420 cites W1753390054 @default.
- W2114121420 cites W1967813587 @default.
- W2114121420 cites W1981125875 @default.
- W2114121420 cites W1986245600 @default.
- W2114121420 cites W1993860393 @default.
- W2114121420 cites W1994002814 @default.
- W2114121420 cites W1998442510 @default.
- W2114121420 cites W2004005631 @default.
- W2114121420 cites W2004221107 @default.
- W2114121420 cites W2007858374 @default.
- W2114121420 cites W2012846905 @default.
- W2114121420 cites W2016906097 @default.
- W2114121420 cites W2018693331 @default.
- W2114121420 cites W2021772998 @default.
- W2114121420 cites W2023796012 @default.
- W2114121420 cites W2028664185 @default.
- W2114121420 cites W2035965523 @default.
- W2114121420 cites W2063695143 @default.
- W2114121420 cites W2066594669 @default.
- W2114121420 cites W2067678014 @default.
- W2114121420 cites W2079516444 @default.
- W2114121420 cites W2087728084 @default.
- W2114121420 cites W2272165297 @default.
- W2114121420 cites W2956145564 @default.
- W2114121420 cites W3021361784 @default.
- W2114121420 cites W39576099 @default.
- W2114121420 cites W4238813032 @default.
- W2114121420 cites W4376453871 @default.
- W2114121420 doi "https://doi.org/10.1016/j.cpc.2006.07.010" @default.
- W2114121420 hasPublicationYear "2006" @default.
- W2114121420 type Work @default.
- W2114121420 sameAs 2114121420 @default.
- W2114121420 citedByCount "67" @default.
- W2114121420 countsByYear W21141214202012 @default.
- W2114121420 countsByYear W21141214202013 @default.
- W2114121420 countsByYear W21141214202014 @default.
- W2114121420 countsByYear W21141214202015 @default.
- W2114121420 countsByYear W21141214202016 @default.
- W2114121420 countsByYear W21141214202017 @default.
- W2114121420 countsByYear W21141214202018 @default.
- W2114121420 countsByYear W21141214202019 @default.
- W2114121420 countsByYear W21141214202020 @default.
- W2114121420 countsByYear W21141214202021 @default.
- W2114121420 countsByYear W21141214202022 @default.
- W2114121420 crossrefType "journal-article" @default.
- W2114121420 hasAuthorship W2114121420A5007391724 @default.
- W2114121420 hasAuthorship W2114121420A5014436292 @default.
- W2114121420 hasAuthorship W2114121420A5050145746 @default.
- W2114121420 hasAuthorship W2114121420A5057793883 @default.
- W2114121420 hasBestOaLocation W21141214204 @default.
- W2114121420 hasConcept C109214941 @default.
- W2114121420 hasConcept C111919701 @default.
- W2114121420 hasConcept C121332964 @default.
- W2114121420 hasConcept C154504017 @default.
- W2114121420 hasConcept C169590947 @default.
- W2114121420 hasConcept C186022433 @default.
- W2114121420 hasConcept C199360897 @default.
- W2114121420 hasConcept C2777683733 @default.
- W2114121420 hasConcept C2778241615 @default.
- W2114121420 hasConcept C2779662365 @default.
- W2114121420 hasConcept C41008148 @default.
- W2114121420 hasConcept C43364308 @default.
- W2114121420 hasConcept C62520636 @default.
- W2114121420 hasConcept C87668248 @default.
- W2114121420 hasConceptScore W2114121420C109214941 @default.
- W2114121420 hasConceptScore W2114121420C111919701 @default.
- W2114121420 hasConceptScore W2114121420C121332964 @default.
- W2114121420 hasConceptScore W2114121420C154504017 @default.
- W2114121420 hasConceptScore W2114121420C169590947 @default.
- W2114121420 hasConceptScore W2114121420C186022433 @default.
- W2114121420 hasConceptScore W2114121420C199360897 @default.
- W2114121420 hasConceptScore W2114121420C2777683733 @default.
- W2114121420 hasConceptScore W2114121420C2778241615 @default.
- W2114121420 hasConceptScore W2114121420C2779662365 @default.
- W2114121420 hasConceptScore W2114121420C41008148 @default.
- W2114121420 hasConceptScore W2114121420C43364308 @default.
- W2114121420 hasConceptScore W2114121420C62520636 @default.
- W2114121420 hasConceptScore W2114121420C87668248 @default.
- W2114121420 hasIssue "10" @default.
- W2114121420 hasLocation W21141214201 @default.
- W2114121420 hasLocation W21141214202 @default.
- W2114121420 hasLocation W21141214203 @default.
- W2114121420 hasLocation W21141214204 @default.
- W2114121420 hasOpenAccess W2114121420 @default.
- W2114121420 hasPrimaryLocation W21141214201 @default.
- W2114121420 hasRelatedWork W1971645124 @default.