Matches in SemOpenAlex for { <https://semopenalex.org/work/W2114173890> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2114173890 abstract "This paper introduces two optimization methods into learning of hierarchical clusterings with modular adaptive resonance theory (ART) networks. The aims are to reduce the complexity of trained networks and clean up the category prototypes during the learning process while maintaining the useful properties of hierarchical ART networks like fast and stable learning, and the ability to build category hierarchies incrementally. The experimental results demonstrate a significant reduction in category complexity as well as some improvement on a range of other metrics at a cost of varying amounts of additional training time. We suggest that scheduling the optimisation steps may be crucial in achieving an optimal trade-off." @default.
- W2114173890 created "2016-06-24" @default.
- W2114173890 creator A5041569981 @default.
- W2114173890 creator A5062684297 @default.
- W2114173890 date "2002-11-27" @default.
- W2114173890 modified "2023-10-16" @default.
- W2114173890 title "Learning and optimisation of hierarchical clusterings with ART-based modular networks" @default.
- W2114173890 cites W2005871663 @default.
- W2114173890 cites W2012611887 @default.
- W2114173890 cites W2015857587 @default.
- W2114173890 cites W2086623798 @default.
- W2114173890 cites W2088735531 @default.
- W2114173890 cites W2106485595 @default.
- W2114173890 cites W2144219012 @default.
- W2114173890 cites W2166280719 @default.
- W2114173890 cites W2423377521 @default.
- W2114173890 cites W2766736793 @default.
- W2114173890 cites W3112020351 @default.
- W2114173890 doi "https://doi.org/10.1109/ijcnn.1998.687229" @default.
- W2114173890 hasPublicationYear "2002" @default.
- W2114173890 type Work @default.
- W2114173890 sameAs 2114173890 @default.
- W2114173890 citedByCount "3" @default.
- W2114173890 countsByYear W21141738902019 @default.
- W2114173890 crossrefType "proceedings-article" @default.
- W2114173890 hasAuthorship W2114173890A5041569981 @default.
- W2114173890 hasAuthorship W2114173890A5062684297 @default.
- W2114173890 hasConcept C101468663 @default.
- W2114173890 hasConcept C111919701 @default.
- W2114173890 hasConcept C115755159 @default.
- W2114173890 hasConcept C119857082 @default.
- W2114173890 hasConcept C126255220 @default.
- W2114173890 hasConcept C127413603 @default.
- W2114173890 hasConcept C146978453 @default.
- W2114173890 hasConcept C154945302 @default.
- W2114173890 hasConcept C204323151 @default.
- W2114173890 hasConcept C206729178 @default.
- W2114173890 hasConcept C33923547 @default.
- W2114173890 hasConcept C41008148 @default.
- W2114173890 hasConcept C50644808 @default.
- W2114173890 hasConcept C98045186 @default.
- W2114173890 hasConceptScore W2114173890C101468663 @default.
- W2114173890 hasConceptScore W2114173890C111919701 @default.
- W2114173890 hasConceptScore W2114173890C115755159 @default.
- W2114173890 hasConceptScore W2114173890C119857082 @default.
- W2114173890 hasConceptScore W2114173890C126255220 @default.
- W2114173890 hasConceptScore W2114173890C127413603 @default.
- W2114173890 hasConceptScore W2114173890C146978453 @default.
- W2114173890 hasConceptScore W2114173890C154945302 @default.
- W2114173890 hasConceptScore W2114173890C204323151 @default.
- W2114173890 hasConceptScore W2114173890C206729178 @default.
- W2114173890 hasConceptScore W2114173890C33923547 @default.
- W2114173890 hasConceptScore W2114173890C41008148 @default.
- W2114173890 hasConceptScore W2114173890C50644808 @default.
- W2114173890 hasConceptScore W2114173890C98045186 @default.
- W2114173890 hasLocation W21141738901 @default.
- W2114173890 hasOpenAccess W2114173890 @default.
- W2114173890 hasPrimaryLocation W21141738901 @default.
- W2114173890 hasRelatedWork W156457833 @default.
- W2114173890 hasRelatedWork W1930673955 @default.
- W2114173890 hasRelatedWork W1966454050 @default.
- W2114173890 hasRelatedWork W1996035835 @default.
- W2114173890 hasRelatedWork W2148511931 @default.
- W2114173890 hasRelatedWork W2161884994 @default.
- W2114173890 hasRelatedWork W2165934307 @default.
- W2114173890 hasRelatedWork W2605067594 @default.
- W2114173890 hasRelatedWork W2607462057 @default.
- W2114173890 hasRelatedWork W2765611817 @default.
- W2114173890 hasRelatedWork W2794980531 @default.
- W2114173890 hasRelatedWork W2889778976 @default.
- W2114173890 hasRelatedWork W2963266548 @default.
- W2114173890 hasRelatedWork W2968953580 @default.
- W2114173890 hasRelatedWork W2993692083 @default.
- W2114173890 hasRelatedWork W2995268324 @default.
- W2114173890 hasRelatedWork W3160198280 @default.
- W2114173890 hasRelatedWork W3211239804 @default.
- W2114173890 hasRelatedWork W3097836457 @default.
- W2114173890 hasRelatedWork W99131004 @default.
- W2114173890 isParatext "false" @default.
- W2114173890 isRetracted "false" @default.
- W2114173890 magId "2114173890" @default.
- W2114173890 workType "article" @default.