Matches in SemOpenAlex for { <https://semopenalex.org/work/W2114259910> ?p ?o ?g. }
- W2114259910 endingPage "231" @default.
- W2114259910 startingPage "210" @default.
- W2114259910 abstract "In Wahba et al. it was shown how the randomized trace method could be used to adaptively tune numerical weather prediction models via generalized cross validation (GCV) and related methods. In this paper a “toy” four-dimensional data assimilation model is developed (actually one space and one time variable), consisting of an equivalent barotropic vorticity equation on a latitude circle, and used to demonstrate how this technique may be used to simultaneously tune weighting, smoothing, and physical parameters. Analyses both with the model as a strong constraint (corresponding to the usual 4D-Var approach) and as a weak constraint (corresponding theoretically to a fixed-interval Kalman smoother) are carried out. The conclusions are limited to the particular toy problem considered, but it can be seen how more elaborate experiments could be carried out, as well as how the method might be applied in practice. The authors have considered five adjustable parameters, two related to a distributed coefficient in the equivalent barotropic vorticity equation (“physical” parameters), one governing the relative weight given to observations versus forecast, one governing the relative weight given to observations versus goodness of fit to the model (in the weak constraint case), and one governing the damping of high-frequency oscillations in the analysis at the final time point (“smoothing” parameter). The weighting parameters and the smoothing parameter can, if desired, be interpreted as ratios of parameters in prior covariances. Analyses are made with a low-resolution model of the dynamics of the equivalent barotropic vorticity equation given noisy forecast (initial conditions) and noisy wind observations, and compared with nature evolved from exact initial conditions using a high-resolution forward integration. The authors found that these five (carefully chosen) parameters are simultaneously tunable on line, that is, simultaneously with the analysis, and 1) that the analysis is equally and strongly sensitive to both the choice of the observed versus forecast weighting parameter and the choice of the smoothing parameter; 2) that the analysis with the model as a weak constraint, based on the tuned estimate of the parameter governing how close the analysis satisfies the model, is somewhat better than the analysis using the model as a strong constraint, although estimation of this tuning parameter varies much more than the other parameters with replications of the experiment; and 3) good estimates of the physical parameters are obtained; however, these estimates are closer to those that make the model integrated forward with perfect initial conditions best fit nature, and these are not exactly the “true” parameters." @default.
- W2114259910 created "2016-06-24" @default.
- W2114259910 creator A5010511524 @default.
- W2114259910 creator A5068857503 @default.
- W2114259910 creator A5072133479 @default.
- W2114259910 creator A5079166112 @default.
- W2114259910 date "1998-01-01" @default.
- W2114259910 modified "2023-09-28" @default.
- W2114259910 title "Adaptive Tuning of Numerical Weather Prediction Models: Simultaneous Estimation of Weighting, Smoothing, and Physical Parameters" @default.
- W2114259910 cites W1585864083 @default.
- W2114259910 cites W1590012787 @default.
- W2114259910 cites W171604816 @default.
- W2114259910 cites W1973268307 @default.
- W2114259910 cites W1980963648 @default.
- W2114259910 cites W1984460308 @default.
- W2114259910 cites W1990381576 @default.
- W2114259910 cites W1990457366 @default.
- W2114259910 cites W1993512681 @default.
- W2114259910 cites W2007495167 @default.
- W2114259910 cites W2009059627 @default.
- W2114259910 cites W2019407464 @default.
- W2114259910 cites W2022334032 @default.
- W2114259910 cites W2024152572 @default.
- W2114259910 cites W2033914841 @default.
- W2114259910 cites W2034095188 @default.
- W2114259910 cites W2045549826 @default.
- W2114259910 cites W2049151340 @default.
- W2114259910 cites W2050461752 @default.
- W2114259910 cites W2054917359 @default.
- W2114259910 cites W2065540158 @default.
- W2114259910 cites W2069557812 @default.
- W2114259910 cites W2073142925 @default.
- W2114259910 cites W2076227027 @default.
- W2114259910 cites W2078714116 @default.
- W2114259910 cites W2079416786 @default.
- W2114259910 cites W2079618706 @default.
- W2114259910 cites W2089053806 @default.
- W2114259910 cites W2093201717 @default.
- W2114259910 cites W2103902186 @default.
- W2114259910 cites W2109806713 @default.
- W2114259910 cites W2121685656 @default.
- W2114259910 cites W2126759246 @default.
- W2114259910 cites W2136189325 @default.
- W2114259910 cites W2144299702 @default.
- W2114259910 cites W2164434395 @default.
- W2114259910 cites W2172819965 @default.
- W2114259910 cites W2178837886 @default.
- W2114259910 cites W2332903284 @default.
- W2114259910 cites W2797583072 @default.
- W2114259910 cites W3000332379 @default.
- W2114259910 cites W612036325 @default.
- W2114259910 cites W24159038 @default.
- W2114259910 doi "https://doi.org/10.1175/1520-0493(1998)126<0210:atonwp>2.0.co;2" @default.
- W2114259910 hasPublicationYear "1998" @default.
- W2114259910 type Work @default.
- W2114259910 sameAs 2114259910 @default.
- W2114259910 citedByCount "29" @default.
- W2114259910 countsByYear W21142599102013 @default.
- W2114259910 countsByYear W21142599102017 @default.
- W2114259910 countsByYear W21142599102018 @default.
- W2114259910 countsByYear W21142599102019 @default.
- W2114259910 countsByYear W21142599102020 @default.
- W2114259910 countsByYear W21142599102021 @default.
- W2114259910 crossrefType "journal-article" @default.
- W2114259910 hasAuthorship W2114259910A5010511524 @default.
- W2114259910 hasAuthorship W2114259910A5068857503 @default.
- W2114259910 hasAuthorship W2114259910A5072133479 @default.
- W2114259910 hasAuthorship W2114259910A5079166112 @default.
- W2114259910 hasBestOaLocation W21142599101 @default.
- W2114259910 hasConcept C105795698 @default.
- W2114259910 hasConcept C121332964 @default.
- W2114259910 hasConcept C153294291 @default.
- W2114259910 hasConcept C183115368 @default.
- W2114259910 hasConcept C24552861 @default.
- W2114259910 hasConcept C24890656 @default.
- W2114259910 hasConcept C28826006 @default.
- W2114259910 hasConcept C29712183 @default.
- W2114259910 hasConcept C33923547 @default.
- W2114259910 hasConcept C3770464 @default.
- W2114259910 hasConcept C57879066 @default.
- W2114259910 hasConceptScore W2114259910C105795698 @default.
- W2114259910 hasConceptScore W2114259910C121332964 @default.
- W2114259910 hasConceptScore W2114259910C153294291 @default.
- W2114259910 hasConceptScore W2114259910C183115368 @default.
- W2114259910 hasConceptScore W2114259910C24552861 @default.
- W2114259910 hasConceptScore W2114259910C24890656 @default.
- W2114259910 hasConceptScore W2114259910C28826006 @default.
- W2114259910 hasConceptScore W2114259910C29712183 @default.
- W2114259910 hasConceptScore W2114259910C33923547 @default.
- W2114259910 hasConceptScore W2114259910C3770464 @default.
- W2114259910 hasConceptScore W2114259910C57879066 @default.
- W2114259910 hasIssue "1" @default.
- W2114259910 hasLocation W21142599101 @default.
- W2114259910 hasOpenAccess W2114259910 @default.
- W2114259910 hasPrimaryLocation W21142599101 @default.
- W2114259910 hasRelatedWork W1515752664 @default.
- W2114259910 hasRelatedWork W2069913111 @default.
- W2114259910 hasRelatedWork W2114259910 @default.