Matches in SemOpenAlex for { <https://semopenalex.org/work/W2114357029> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2114357029 endingPage "4" @default.
- W2114357029 startingPage "4" @default.
- W2114357029 abstract "In this paper, we solve the customer credit card churn prediction via data mining. We developed an ensemble system incorporating majority voting and involving Multilayer Perceptron (MLP), Logistic Regression (LR), decision trees (J48), Random Forest (RF), Radial Basis Function (RBF) network and Support Vector Machine (SVM) as the constituents. The dataset was taken from the Business Intelligence Cup organised by the University of Chile in 2004. Since it is a highly unbalanced dataset with 93% loyal and 7% churned customers, we employed (1) undersampling, (2) oversampling, (3) a combination of undersampling and oversampling and (4) the Synthetic Minority Oversampling Technique (SMOTE) for balancing it. Furthermore, tenfold cross-validation was employed. The results indicated that SMOTE achieved good overall accuracy. Also, SMOTE and a combination of undersampling and oversampling improved the sensitivity and overall accuracy in majority voting. In addition, the Classification and Regression Tree (CART) was used for the purpose of feature selection. The reduced feature set was fed to the classifiers mentioned above. Thus, this paper outlines the most important predictor variables in solving the credit card churn prediction problem. Moreover, the rules generated by decision tree J48 act as an early warning expert system." @default.
- W2114357029 created "2016-06-24" @default.
- W2114357029 creator A5051371214 @default.
- W2114357029 creator A5073505371 @default.
- W2114357029 date "2008-01-01" @default.
- W2114357029 modified "2023-10-18" @default.
- W2114357029 title "Predicting credit card customer churn in banks using data mining" @default.
- W2114357029 cites W1680540421 @default.
- W2114357029 cites W1973849164 @default.
- W2114357029 cites W1975145387 @default.
- W2114357029 cites W1975710656 @default.
- W2114357029 cites W1990788070 @default.
- W2114357029 cites W1998320186 @default.
- W2114357029 cites W2003083941 @default.
- W2114357029 cites W2005755239 @default.
- W2114357029 cites W2025618885 @default.
- W2114357029 cites W2032770670 @default.
- W2114357029 cites W2059284263 @default.
- W2114357029 cites W2060510187 @default.
- W2114357029 cites W2076313627 @default.
- W2114357029 cites W2091465269 @default.
- W2114357029 cites W2114386642 @default.
- W2114357029 cites W2136806966 @default.
- W2114357029 cites W2138906630 @default.
- W2114357029 cites W2139921829 @default.
- W2114357029 cites W2140301981 @default.
- W2114357029 cites W2142752589 @default.
- W2114357029 cites W2144492955 @default.
- W2114357029 cites W2148143831 @default.
- W2114357029 cites W2150299397 @default.
- W2114357029 cites W2158698691 @default.
- W2114357029 cites W2159433204 @default.
- W2114357029 cites W2160505632 @default.
- W2114357029 cites W2161634631 @default.
- W2114357029 cites W2171921035 @default.
- W2114357029 cites W2185844286 @default.
- W2114357029 cites W2480186662 @default.
- W2114357029 cites W97976214 @default.
- W2114357029 doi "https://doi.org/10.1504/ijdats.2008.020020" @default.
- W2114357029 hasPublicationYear "2008" @default.
- W2114357029 type Work @default.
- W2114357029 sameAs 2114357029 @default.
- W2114357029 citedByCount "105" @default.
- W2114357029 countsByYear W21143570292012 @default.
- W2114357029 countsByYear W21143570292013 @default.
- W2114357029 countsByYear W21143570292014 @default.
- W2114357029 countsByYear W21143570292015 @default.
- W2114357029 countsByYear W21143570292016 @default.
- W2114357029 countsByYear W21143570292017 @default.
- W2114357029 countsByYear W21143570292018 @default.
- W2114357029 countsByYear W21143570292019 @default.
- W2114357029 countsByYear W21143570292020 @default.
- W2114357029 countsByYear W21143570292021 @default.
- W2114357029 countsByYear W21143570292022 @default.
- W2114357029 countsByYear W21143570292023 @default.
- W2114357029 crossrefType "journal-article" @default.
- W2114357029 hasAuthorship W2114357029A5051371214 @default.
- W2114357029 hasAuthorship W2114357029A5073505371 @default.
- W2114357029 hasConcept C10138342 @default.
- W2114357029 hasConcept C124101348 @default.
- W2114357029 hasConcept C144133560 @default.
- W2114357029 hasConcept C145097563 @default.
- W2114357029 hasConcept C2983355114 @default.
- W2114357029 hasConcept C41008148 @default.
- W2114357029 hasConceptScore W2114357029C10138342 @default.
- W2114357029 hasConceptScore W2114357029C124101348 @default.
- W2114357029 hasConceptScore W2114357029C144133560 @default.
- W2114357029 hasConceptScore W2114357029C145097563 @default.
- W2114357029 hasConceptScore W2114357029C2983355114 @default.
- W2114357029 hasConceptScore W2114357029C41008148 @default.
- W2114357029 hasIssue "1" @default.
- W2114357029 hasLocation W21143570291 @default.
- W2114357029 hasOpenAccess W2114357029 @default.
- W2114357029 hasPrimaryLocation W21143570291 @default.
- W2114357029 hasRelatedWork W2079394618 @default.
- W2114357029 hasRelatedWork W2130043461 @default.
- W2114357029 hasRelatedWork W2350741829 @default.
- W2114357029 hasRelatedWork W2358668433 @default.
- W2114357029 hasRelatedWork W2376932109 @default.
- W2114357029 hasRelatedWork W2382290278 @default.
- W2114357029 hasRelatedWork W2390279801 @default.
- W2114357029 hasRelatedWork W2748952813 @default.
- W2114357029 hasRelatedWork W2899084033 @default.
- W2114357029 hasRelatedWork W2530322880 @default.
- W2114357029 hasVolume "1" @default.
- W2114357029 isParatext "false" @default.
- W2114357029 isRetracted "false" @default.
- W2114357029 magId "2114357029" @default.
- W2114357029 workType "article" @default.