Matches in SemOpenAlex for { <https://semopenalex.org/work/W2114492013> ?p ?o ?g. }
- W2114492013 endingPage "550" @default.
- W2114492013 startingPage "515" @default.
- W2114492013 abstract "We present a Riemann solver derived by a relaxation technique for classical single-phase shallow flow equations and for a two-phase shallow flow model describing a mixture of solid granular material and fluid. Our primary interest is the numerical approximation of this two-phase solid/fluid model, whose complexity poses numerical difficulties that cannot be efficiently addressed by existing solvers. In particular, we are concerned with ensuring a robust treatment of dry bed states. The relaxation system used by the proposed solver is formulated by introducing auxiliary variables that replace the momenta in the spatial gradients of the original model systems. The resulting relaxation solver is related to Roe solver in that its Riemann solution for the flow height and relaxation variables is formally computed as Roe’s Riemann solution. The relaxation solver has the advantage of a certain degree of freedom in the specification of the wave structure through the choice of the relaxation parameters. This flexibility can be exploited to handle robustly vacuum states, which is a well known difficulty of standard Roe’s method, while maintaining Roe’s low diffusivity. For the single-phase model positivity of flow height is rigorously preserved. For the two-phase model positivity of volume fractions in general is not ensured, and a suitable restriction on the CFL number might be needed. Nonetheless, numerical experiments suggest that the proposed two-phase flow solver efficiently models wet/dry fronts and vacuum formation for a large range of flow conditions. As a corollary of our study, we show that for single-phase shallow flow equations the relaxation solver is formally equivalent to the VFRoe solver with conservative variables of Gallouët and Masella [T. Gallouët, J.-M. Masella, Un schéma de Godunov approché C.R. Acad. Sci. Paris, Série I, 323 (1996) 77–84]. The relaxation interpretation allows establishing positivity conditions for this VFRoe method." @default.
- W2114492013 created "2016-06-24" @default.
- W2114492013 creator A5005991575 @default.
- W2114492013 creator A5014809507 @default.
- W2114492013 creator A5062003579 @default.
- W2114492013 date "2011-02-01" @default.
- W2114492013 modified "2023-10-18" @default.
- W2114492013 title "A Riemann solver for single-phase and two-phase shallow flow models based on relaxation. Relations with Roe and VFRoe solvers" @default.
- W2114492013 cites W1588838185 @default.
- W2114492013 cites W1963544899 @default.
- W2114492013 cites W1971166309 @default.
- W2114492013 cites W1975096556 @default.
- W2114492013 cites W1982040517 @default.
- W2114492013 cites W1986742199 @default.
- W2114492013 cites W1998602489 @default.
- W2114492013 cites W1999991640 @default.
- W2114492013 cites W2004686369 @default.
- W2114492013 cites W2011525140 @default.
- W2114492013 cites W2012660391 @default.
- W2114492013 cites W2019939454 @default.
- W2114492013 cites W2022659432 @default.
- W2114492013 cites W2029678427 @default.
- W2114492013 cites W2031801811 @default.
- W2114492013 cites W2038677077 @default.
- W2114492013 cites W2041314330 @default.
- W2114492013 cites W2043057066 @default.
- W2114492013 cites W2050445534 @default.
- W2114492013 cites W2051419690 @default.
- W2114492013 cites W2056368333 @default.
- W2114492013 cites W2056397997 @default.
- W2114492013 cites W2058421692 @default.
- W2114492013 cites W2060976754 @default.
- W2114492013 cites W2061073880 @default.
- W2114492013 cites W2061726168 @default.
- W2114492013 cites W2062428473 @default.
- W2114492013 cites W2073447845 @default.
- W2114492013 cites W2073809154 @default.
- W2114492013 cites W2089511814 @default.
- W2114492013 cites W2097033979 @default.
- W2114492013 cites W2099400260 @default.
- W2114492013 cites W2104188985 @default.
- W2114492013 cites W2130935673 @default.
- W2114492013 cites W2136592480 @default.
- W2114492013 cites W2139170886 @default.
- W2114492013 cites W2143882171 @default.
- W2114492013 cites W2152122438 @default.
- W2114492013 cites W2155785405 @default.
- W2114492013 cites W2163202278 @default.
- W2114492013 cites W4245037559 @default.
- W2114492013 doi "https://doi.org/10.1016/j.jcp.2010.10.001" @default.
- W2114492013 hasPublicationYear "2011" @default.
- W2114492013 type Work @default.
- W2114492013 sameAs 2114492013 @default.
- W2114492013 citedByCount "23" @default.
- W2114492013 countsByYear W21144920132012 @default.
- W2114492013 countsByYear W21144920132013 @default.
- W2114492013 countsByYear W21144920132014 @default.
- W2114492013 countsByYear W21144920132015 @default.
- W2114492013 countsByYear W21144920132016 @default.
- W2114492013 countsByYear W21144920132017 @default.
- W2114492013 countsByYear W21144920132018 @default.
- W2114492013 countsByYear W21144920132019 @default.
- W2114492013 countsByYear W21144920132020 @default.
- W2114492013 countsByYear W21144920132021 @default.
- W2114492013 countsByYear W21144920132022 @default.
- W2114492013 crossrefType "journal-article" @default.
- W2114492013 hasAuthorship W2114492013A5005991575 @default.
- W2114492013 hasAuthorship W2114492013A5014809507 @default.
- W2114492013 hasAuthorship W2114492013A5062003579 @default.
- W2114492013 hasBestOaLocation W21144920132 @default.
- W2114492013 hasConcept C120796332 @default.
- W2114492013 hasConcept C121332964 @default.
- W2114492013 hasConcept C121864883 @default.
- W2114492013 hasConcept C126255220 @default.
- W2114492013 hasConcept C134306372 @default.
- W2114492013 hasConcept C144308804 @default.
- W2114492013 hasConcept C15744967 @default.
- W2114492013 hasConcept C171520575 @default.
- W2114492013 hasConcept C199479865 @default.
- W2114492013 hasConcept C2524010 @default.
- W2114492013 hasConcept C2776029896 @default.
- W2114492013 hasConcept C2778770139 @default.
- W2114492013 hasConcept C28826006 @default.
- W2114492013 hasConcept C33923547 @default.
- W2114492013 hasConcept C38349280 @default.
- W2114492013 hasConcept C40709475 @default.
- W2114492013 hasConcept C50478463 @default.
- W2114492013 hasConcept C57879066 @default.
- W2114492013 hasConcept C77805123 @default.
- W2114492013 hasConceptScore W2114492013C120796332 @default.
- W2114492013 hasConceptScore W2114492013C121332964 @default.
- W2114492013 hasConceptScore W2114492013C121864883 @default.
- W2114492013 hasConceptScore W2114492013C126255220 @default.
- W2114492013 hasConceptScore W2114492013C134306372 @default.
- W2114492013 hasConceptScore W2114492013C144308804 @default.
- W2114492013 hasConceptScore W2114492013C15744967 @default.
- W2114492013 hasConceptScore W2114492013C171520575 @default.
- W2114492013 hasConceptScore W2114492013C199479865 @default.